IDEAS home Printed from https://ideas.repec.org/a/spr/binfse/v5y2013i6p397-408.html
   My bibliography  Save this article

A Low-Effort Recommendation System with High Accuracy

Author

Listed:
  • Jella Pfeiffer
  • Michael Scholz

Abstract

In recent studies on recommendation systems, the choice-based conjoint analysis has been suggested as a method for measuring consumer preferences. This approach achieves high recommendation accuracy and does not suffer from the start-up problem because it is also applicable for recommendations for new consumers or of new products. However, this method requires massive consumer input, which causes consumer reluctance. In a simulation study, we demonstrate the high accuracy, but also the high user’s effort for using a utility-based recommendation system using a choice-based conjoint analysis with hierarchical Bayes estimation. In order to reduce the conflict between consumer effort and recommendation accuracy, we develop a novel approach that only shows Pareto-efficient alternatives and ranks them according to the number of dominated attributes. We demonstrate that, in terms of the decision accuracy of the recommended products, the ranked Pareto-front approach performs better than a recommendation system that employs choice-based conjoint analysis. Furthermore, the consumer’s effort is kept low and comparable to that of simple systems that require little consumer input. Copyright Springer Fachmedien Wiesbaden 2013

Suggested Citation

  • Jella Pfeiffer & Michael Scholz, 2013. "A Low-Effort Recommendation System with High Accuracy," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 5(6), pages 397-408, December.
  • Handle: RePEc:spr:binfse:v:5:y:2013:i:6:p:397-408
    DOI: 10.1007/s12599-013-0295-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s12599-013-0295-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s12599-013-0295-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gensler, Sonja & Hinz, Oliver & Skiera, Bernd & Theysohn, Sven, 2012. "Willingness-to-pay estimation with choice-based conjoint analysis: Addressing extreme response behavior with individually adapted designs," European Journal of Operational Research, Elsevier, vol. 219(2), pages 368-378.
    2. Rand, William & Rust, Roland T., 2011. "Agent-based modeling in marketing: Guidelines for rigor," International Journal of Research in Marketing, Elsevier, vol. 28(3), pages 181-193.
    3. Lohse, Gerald L. & Johnson, Eric J., 1996. "A Comparison of Two Process Tracing Methods for Choice Tasks," Organizational Behavior and Human Decision Processes, Elsevier, vol. 68(1), pages 28-43, October.
    4. Loomes, Graham & Sugden, Robert, 1982. "Regret Theory: An Alternative Theory of Rational Choice under Uncertainty," Economic Journal, Royal Economic Society, vol. 92(368), pages 805-824, December.
    5. Hoyer, Wayne D, 1984. "An Examination of Consumer Decision Making for a Common Repeat Purchase Product," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 11(3), pages 822-829, December.
    6. Michael Yee & Ely Dahan & John R. Hauser & James Orlin, 2007. "Greedoid-Based Noncompensatory Inference," Marketing Science, INFORMS, vol. 26(4), pages 532-549, 07-08.
    7. Eric J. Johnson & John W. Payne, 1985. "Effort and Accuracy in Choice," Management Science, INFORMS, vol. 31(4), pages 395-414, April.
    8. John Butler & Douglas J. Morrice & Peter W. Mullarkey, 2001. "A Multiple Attribute Utility Theory Approach to Ranking and Selection," Management Science, INFORMS, vol. 47(6), pages 800-816, June.
    9. Oliver Hinz & Jochen Eckert, 2010. "The Impact of Search and Recommendation Systems on Sales in Electronic Commerce," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 2(2), pages 67-77, April.
    10. Aksoy, Lerzan & Cooil, Bruce & Lurie, Nicholas H., 2011. "Decision Quality Measures in Recommendation Agents Research," Journal of Interactive Marketing, Elsevier, vol. 25(2), pages 110-122.
    11. Christian Schlereth & Christine Eckert & Bernd Skiera, 2012. "Using discrete choice experiments to estimate willingness-to-pay intervals," Marketing Letters, Springer, vol. 23(3), pages 761-776, September.
    12. Arnaud De Bruyn & John C. Liechty & Eelko K. R. E. Huizingh & Gary L. Lilien, 2008. "Offering Online Recommendations with Minimum Customer Input Through Conjoint-Based Decision Aids," Marketing Science, INFORMS, vol. 27(3), pages 443-460, 05-06.
    13. Alan L. Montgomery & Kartik Hosanagar & Ramayya Krishnan & Karen B. Clay, 2004. "Designing a Better Shopbot," Management Science, INFORMS, vol. 50(2), pages 189-206, February.
    14. Marcel Fritz & Christian Schlereth & Stefan Figge, 2011. "Empirical Evaluation of Fair Use Flat Rate Strategies for Mobile Internet," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 3(5), pages 269-277, October.
    15. Denzil G. Fiebig & Michael P. Keane & Jordan Louviere & Nada Wasi, 2010. "The Generalized Multinomial Logit Model: Accounting for Scale and Coefficient Heterogeneity," Marketing Science, INFORMS, vol. 29(3), pages 393-421, 05-06.
    16. Hey, John D., 1982. "Search for rules for search," Journal of Economic Behavior & Organization, Elsevier, vol. 3(1), pages 65-81, March.
    17. Butler, John C. & Dyer, James S. & Jia, Jianmin & Tomak, Kerem, 2008. "Enabling e-transactions with multi-attribute preference models," European Journal of Operational Research, Elsevier, vol. 186(2), pages 748-765, April.
    18. Stanley F. Biggs & Jean C. Bedard & Brian G. Gaber & Thomas J. Linsmeier, 1985. "The Effects of Task Size and Similarity on the Decision Behavior of Bank Loan Officers," Management Science, INFORMS, vol. 31(8), pages 970-987, August.
    19. Bettman, James R. & Johnson, Eric J. & Payne, John W., 1990. "A componential analysis of cognitive effort in choice," Organizational Behavior and Human Decision Processes, Elsevier, vol. 45(1), pages 111-139, February.
    20. Jyrki Wallenius & James S. Dyer & Peter C. Fishburn & Ralph E. Steuer & Stanley Zionts & Kalyanmoy Deb, 2008. "Multiple Criteria Decision Making, Multiattribute Utility Theory: Recent Accomplishments and What Lies Ahead," Management Science, INFORMS, vol. 54(7), pages 1336-1349, July.
    21. Gerald Häubl & Valerie Trifts, 2000. "Consumer Decision Making in Online Shopping Environments: The Effects of Interactive Decision Aids," Marketing Science, INFORMS, vol. 19(1), pages 4-21, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Scholz, Michael & Dorner, Verena & Schryen, Guido & Benlian, Alexander, 2017. "A configuration-based recommender system for supporting e-commerce decisions," European Journal of Operational Research, Elsevier, vol. 259(1), pages 205-215.
    2. Sebastian Köhler & Thomas Wöhner & Ralf Peters, 2016. "The impact of consumer preferences on the accuracy of collaborative filtering recommender systems," Electronic Markets, Springer;IIM University of St. Gallen, vol. 26(4), pages 369-379, November.
    3. Scholz, Michael & Pfeiffer, Jella & Rothlauf, Franz, 2017. "Using PageRank for non-personalized default rankings in dynamic markets," European Journal of Operational Research, Elsevier, vol. 260(1), pages 388-401.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Murray, Kyle B. & Häubl, Gerald, 2009. "Personalization without Interrogation: Towards more Effective Interactions between Consumers and Feature-Based Recommendation Agents," Journal of Interactive Marketing, Elsevier, vol. 23(2), pages 138-146.
    2. Schlereth, Christian & Eckert, Christine & Schaaf, René & Skiera, Bernd, 2014. "Measurement of preferences with self-explicated approaches: A classification and merge of trade-off- and non-trade-off-based evaluation types," European Journal of Operational Research, Elsevier, vol. 238(1), pages 185-198.
    3. Hauser, John R., 2014. "Consideration-set heuristics," Journal of Business Research, Elsevier, vol. 67(8), pages 1688-1699.
    4. Scholz, Michael & Dorner, Verena & Schryen, Guido & Benlian, Alexander, 2017. "A configuration-based recommender system for supporting e-commerce decisions," European Journal of Operational Research, Elsevier, vol. 259(1), pages 205-215.
    5. S. Iglesias-Parro & A. Ortega & E. De la Fuente & I. Martín, 2001. "Context Variables as Cognitive Effort Modulators in Decision Making Using an Alternative-Based Processing Strategy," Quality & Quantity: International Journal of Methodology, Springer, vol. 35(3), pages 311-323, August.
    6. Alan L. Montgomery & Kartik Hosanagar & Ramayya Krishnan & Karen B. Clay, 2004. "Designing a Better Shopbot," Management Science, INFORMS, vol. 50(2), pages 189-206, February.
    7. Oded Netzer & Olivier Toubia & Eric Bradlow & Ely Dahan & Theodoros Evgeniou & Fred Feinberg & Eleanor Feit & Sam Hui & Joseph Johnson & John Liechty & James Orlin & Vithala Rao, 2008. "Beyond conjoint analysis: Advances in preference measurement," Marketing Letters, Springer, vol. 19(3), pages 337-354, December.
    8. Sonntag, Axel, 2015. "Search costs and adaptive consumers: Short time delays do not affect choice quality," Journal of Economic Behavior & Organization, Elsevier, vol. 113(C), pages 64-79.
    9. James Agarwal & Wayne DeSarbo & Naresh K. Malhotra & Vithala Rao, 2015. "An Interdisciplinary Review of Research in Conjoint Analysis: Recent Developments and Directions for Future Research," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 2(1), pages 19-40, March.
    10. Meißner, Martin & Oppewal, Harmen & Huber, Joel, 2020. "Surprising adaptivity to set size changes in multi-attribute repeated choice tasks," Journal of Business Research, Elsevier, vol. 111(C), pages 163-175.
    11. Yoichiro Fujii & Hajime Murakami & Yutaka Nakamura & Kazuhisa Takemura, 2023. "Multiattribute regret: theory and experimental study," Theory and Decision, Springer, vol. 95(4), pages 623-662, November.
    12. Shuk Ying Ho & David Bodoff & Kar Yan Tam, 2011. "Timing of Adaptive Web Personalization and Its Effects on Online Consumer Behavior," Information Systems Research, INFORMS, vol. 22(3), pages 660-679, September.
    13. Song Lin & Juanjuan Zhang & John R. Hauser, 2015. "Learning from Experience, Simply," Marketing Science, INFORMS, vol. 34(1), pages 1-19, January.
    14. Pantelis P. Analytis & Amit Kothiyal & Konstantinos Katsikopoulos, 2014. "Multi-attribute utility models as cognitive search engines," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 9(5), pages 403-419, September.
    15. Lurie, Nicholas H. & Wen, Na, 2014. "Simple Decision Aids and Consumer Decision Making," Journal of Retailing, Elsevier, vol. 90(4), pages 511-523.
    16. D.J. Butler, 1990. "Experimental Techniques in Economics: Some lessons to date," Economics Discussion / Working Papers 90-22, The University of Western Australia, Department of Economics.
    17. Lior Fink & Daniele Papismedov, 2023. "On the Same Page? What Users Benefit from a Desktop View on Mobile Devices," Information Systems Research, INFORMS, vol. 34(2), pages 423-441, June.
    18. repec:cup:judgdm:v:9:y:2014:i:5:p:403-419 is not listed on IDEAS
    19. Aksoy, Lerzan & Cooil, Bruce & Lurie, Nicholas H., 2011. "Decision Quality Measures in Recommendation Agents Research," Journal of Interactive Marketing, Elsevier, vol. 25(2), pages 110-122.
    20. Aloysius, John A. & Davis, Fred D. & Wilson, Darryl D. & Ross Taylor, A. & Kottemann, Jeffrey E., 2006. "User acceptance of multi-criteria decision support systems: The impact of preference elicitation techniques," European Journal of Operational Research, Elsevier, vol. 169(1), pages 273-285, February.
    21. Dokyun Lee & Kartik Hosanagar, 2021. "How Do Product Attributes and Reviews Moderate the Impact of Recommender Systems Through Purchase Stages?," Management Science, INFORMS, vol. 67(1), pages 524-546, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:binfse:v:5:y:2013:i:6:p:397-408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.