IDEAS home Printed from https://ideas.repec.org/p/ags/uwauwp/235373.html
   My bibliography  Save this paper

Discrete choice models: scale heterogeneity and why it matters

Author

Listed:
  • Davis, Katrina J
  • Burton, Michael
  • Kragt, Marit E

Abstract

Models to analyse discrete choice data that account for heterogeneity in error variance (scale) across respondents are increasingly common, e.g. heteroscedastic conditional logit or scale adjusted latent class models. In this paper we do not question the need to allow for scale heterogeneity. Rather, we examine the interpretation of results from these models. We provide five empirical examples using discrete choice experiments, analysed using conditional logit, heteroscedastic conditional logit, or scale adjusted latent class models. We show that analysts may incorrectly conclude that preferences are consistent across respondents even if they are not, or that classes of respondents may have (in)significant preferences for some or all attributes of the experiment, when they do not. We recommend that future studies employing scale heterogeneity models explicitly state scale factors for all samples, choice contexts, and/or latent scale classes, and report rescaled preference parameters for each of these groups.

Suggested Citation

  • Davis, Katrina J & Burton, Michael & Kragt, Marit E, 2016. "Discrete choice models: scale heterogeneity and why it matters," Working Papers 235373, University of Western Australia, School of Agricultural and Resource Economics.
  • Handle: RePEc:ags:uwauwp:235373
    DOI: 10.22004/ag.econ.235373
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/235373/files/WP1602_Davis%20Burton%20Kragt_DC%20models%20scale%20het%20and%20why%20it%20matters.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.235373?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Louviere, Jordan & Lings, Ian & Islam, Towhidul & Gudergan, Siegfried & Flynn, Terry, 2013. "An introduction to the application of (case 1) best–worst scaling in marketing research," International Journal of Research in Marketing, Elsevier, vol. 30(3), pages 292-303.
    2. Marit E. Kragt & J.W. Bennett, 2011. "Using choice experiments to value catchment and estuary health in Tasmania with individual preference heterogeneity," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(2), pages 159-179, April.
    3. Wiktor Adamowicz & Peter Boxall & Michael Williams & Jordan Louviere, 1998. "Stated Preference Approaches for Measuring Passive Use Values: Choice Experiments and Contingent Valuation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(1), pages 64-75.
    4. Arne Risa Hole, 2006. "Small-sample properties of tests for heteroscedasticity in the conditional logit model," Economics Bulletin, AccessEcon, vol. 3(18), pages 1-14.
    5. Thiene, Mara & Meyerhoff, Jürgen & De Salvo, Maria, 2012. "Scale and taste heterogeneity for forest biodiversity: Models of serial nonparticipation and their effects," Journal of Forest Economics, Elsevier, vol. 18(4), pages 355-369.
    6. Marti, Joachim, 2012. "A best–worst scaling survey of adolescents' level of concern for health and non-health consequences of smoking," Social Science & Medicine, Elsevier, vol. 75(1), pages 87-97.
    7. Danny Campbell & David A. Hensher & Riccardo Scarpa, 2011. "Non-attendance to attributes in environmental choice analysis: a latent class specification," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 54(8), pages 1061-1076, December.
    8. Denzil G. Fiebig & Michael P. Keane & Jordan Louviere & Nada Wasi, 2010. "The Generalized Multinomial Logit Model: Accounting for Scale and Coefficient Heterogeneity," Marketing Science, INFORMS, vol. 29(3), pages 393-421, 05-06.
    9. Swait, Joffre & Adamowicz, Wiktor, 2001. "Choice Environment, Market Complexity, and Consumer Behavior: A Theoretical and Empirical Approach for Incorporating Decision Complexity into Models of Consumer Choice," Organizational Behavior and Human Decision Processes, Elsevier, vol. 86(2), pages 141-167, November.
    10. Davis, Katrina J & Kragt, Marit E & Gelcich, Stefan & Burton, Michael & Schilizzi, Steven & Pannell, David J, 2015. "What prevents fishers from enforcing their user rights?," Working Papers 204430, University of Western Australia, School of Agricultural and Resource Economics.
    11. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    12. Anna Bartczak & Jürgen Meyerhoff, 2012. "Valuing the chances of survival of two distinct Eurasian lynx populations in Poland – do people want to keep doors open?," Working Papers 2012-14, Faculty of Economic Sciences, University of Warsaw.
    13. Flynn, Terry Nicholas & Louviere, Jordan J. & Peters, Tim J. & Coast, Joanna, 2010. "Using discrete choice experiments to understand preferences for quality of life. Variance-scale heterogeneity matters," Social Science & Medicine, Elsevier, vol. 70(12), pages 1957-1965, June.
    14. Stephane Hess & John Rose, 2012. "Can scale and coefficient heterogeneity be separated in random coefficients models?," Transportation, Springer, vol. 39(6), pages 1225-1239, November.
    15. Christian Schlereth & Christine Eckert & Bernd Skiera, 2012. "Using discrete choice experiments to estimate willingness-to-pay intervals," Marketing Letters, Springer, vol. 23(3), pages 761-776, September.
    16. Islam, Towhidul, 2014. "Household level innovation diffusion model of photo-voltaic (PV) solar cells from stated preference data," Energy Policy, Elsevier, vol. 65(C), pages 340-350.
    17. Glenk, Klaus & Hall, Clare & Liebe, Ulf & Meyerhoff, Jürgen, 2012. "Preferences of Scotch malt whisky consumers for changes in pesticide use and origin of barley," Food Policy, Elsevier, vol. 37(6), pages 719-731.
    18. Mike Burton & Dan Rigby, 2009. "Hurdle and Latent Class Approaches to Serial Non-Participation in Choice Models," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 42(2), pages 211-226, February.
    19. Carlsson, Fredrik & Frykblom, Peter & Liljenstolpe, Carolina, 2003. "Valuing wetland attributes: an application of choice experiments," Ecological Economics, Elsevier, vol. 47(1), pages 95-103, November.
    20. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    21. Kenneth E. Train, 1998. "Recreation Demand Models with Taste Differences over People," Land Economics, University of Wisconsin Press, vol. 74(2), pages 230-239.
    22. Richard Carson & Jordan Louviere, 2011. "A Common Nomenclature for Stated Preference Elicitation Approaches," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 49(4), pages 539-559, August.
    23. Sorada Tapsuwan & Michael Burton & Aditi Mankad & David Tucker & Murni Greenhill, 2014. "Adapting to Less Water: Household Willingness to Pay for Decentralised Water Systems in Urban Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1111-1125, March.
    24. T.N. Flynn & A.A.J. Marley, 2014. "Best-worst scaling: theory and methods," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 8, pages 178-201, Edward Elgar Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dalemans, Floris & Muys, Bart & Verwimp, Anne & Van den Broeck, Goedele & Bohra, Babita & Sharma, Navin & Gowda, Balakrishna & Tollens, Eric & Maertens, Miet, 2018. "Redesigning oilseed tree biofuel systems in India," Energy Policy, Elsevier, vol. 115(C), pages 631-643.
    2. Schaak, Henning & Mußhoff, Oliver, 2018. "Public preferences for pasture landscapes and the role of scale heterogeneity," FORLand Working Papers 04 (2018), Humboldt University Berlin, DFG Research Unit 2569 FORLand "Agricultural Land Markets – Efficiency and Regulation".
    3. Amilon, Anna & Ladenburg, Jacob & Siren, Anu & Vernstrøm Østergaard, Stine, 2020. "Willingness to pay for long-term home care services: Evidence from a stated preferences analysis," The Journal of the Economics of Ageing, Elsevier, vol. 17(C).
    4. Kayode Ajewole & Elliott Dennis & Ted C. Schroeder & Jason Bergtold, 2021. "Relative valuation of food and non‐food risks with a comparison to actuarial values: A best–worst approach," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 927-943, November.
    5. Schaak, H. & Musshoff, O., 2018. "Are public preferences for pasture landscapes heterogeneous? Results of a discrete choice experiment in Germany," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277213, International Association of Agricultural Economists.
    6. Thiermann, Insa & Schroeer, Daniel & Latacz-Lohmann, Uwe, 2022. "Are German farmers ready for ‘warm restructuring’ of the pig sector?," 96th Annual Conference, April 4-6, 2022, K U Leuven, Belgium 321201, Agricultural Economics Society - AES.
    7. Quynh, Chi Nguyen Thi & Schilizzi, Steven & Hailu, Atakelty & Iftekhar, Sayed, 2018. "Fishers' Preference Heterogeneity and Trade-offs Between Design Options for More Effective Monitoring of Fisheries," Ecological Economics, Elsevier, vol. 151(C), pages 22-33.
    8. Hajji, Assma & Trukeschitz, Birgit & Malley, Juliette & Batchelder, Laurie & Saloniki, Eirini & Linnosmaa, Ismo & Lu, Hui, 2020. "Population-based preference weights for the Adult Social Care Outcomes Toolkit (ASCOT) for service users for Austria: Findings from a best-worst experiment," Social Science & Medicine, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thiene, Mara & Meyerhoff, Jürgen & De Salvo, Maria, 2012. "Scale and taste heterogeneity for forest biodiversity: Models of serial nonparticipation and their effects," Journal of Forest Economics, Elsevier, vol. 18(4), pages 355-369.
    2. Robert J. Johnston & Kevin J. Boyle & Wiktor (Vic) Adamowicz & Jeff Bennett & Roy Brouwer & Trudy Ann Cameron & W. Michael Hanemann & Nick Hanley & Mandy Ryan & Riccardo Scarpa & Roger Tourangeau & Ch, 2017. "Contemporary Guidance for Stated Preference Studies," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(2), pages 319-405.
    3. Mara Thiene & Riccardo Scarpa & Jordan Louviere, 2015. "Addressing Preference Heterogeneity, Multiple Scales and Attribute Attendance with a Correlated Finite Mixing Model of Tap Water Choice," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(3), pages 637-656, November.
    4. Kaambwa, Billingsley & Lancsar, Emily & McCaffrey, Nicola & Chen, Gang & Gill, Liz & Cameron, Ian D. & Crotty, Maria & Ratcliffe, Julie, 2015. "Investigating consumers' and informal carers' views and preferences for consumer directed care: A discrete choice experiment," Social Science & Medicine, Elsevier, vol. 140(C), pages 81-94.
    5. Juutinen, Artti & Kosenius, Anna-Kaisa & Ovaskainen, Ville, 2014. "Estimating the benefits of recreation-oriented management in state-owned commercial forests in Finland: A choice experiment," Journal of Forest Economics, Elsevier, vol. 20(4), pages 396-412.
    6. Kassie, Girma T. & Abdulai, Awudu & Greene, William H. & Shiferaw, Bekele & Abate, Tsedeke & Tarekegne, Amsal & Sutcliffe, Chloe, 2017. "Modeling Preference and Willingness to Pay for Drought Tolerance (DT) in Maize in Rural Zimbabwe," World Development, Elsevier, vol. 94(C), pages 465-477.
    7. Ladenburg, Jacob & Olsen, Søren Bøye, 2014. "Augmenting short Cheap Talk scripts with a repeated Opt-Out Reminder in Choice Experiment surveys," Resource and Energy Economics, Elsevier, vol. 37(C), pages 39-63.
    8. Mariel, Petr & Ayala, Amaya de & Hoyos, David & Abdullah, Sabah, 2013. "Selecting random parameters in discrete choice experiment for environmental valuation: A simulation experiment," Journal of choice modelling, Elsevier, vol. 7(C), pages 44-57.
    9. Glenk, Klaus & Hall, Clare & Liebe, Ulf & Meyerhoff, Jürgen, 2012. "Preferences of Scotch malt whisky consumers for changes in pesticide use and origin of barley," Food Policy, Elsevier, vol. 37(6), pages 719-731.
    10. Wiktor L. Adamowicz & Klaus Glenk & Jürgen Meyerhoff, 2014. "Choice modelling research in environmental and resource economics," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 27, pages 661-674, Edward Elgar Publishing.
    11. Hoyos, David, 2010. "The state of the art of environmental valuation with discrete choice experiments," Ecological Economics, Elsevier, vol. 69(8), pages 1595-1603, June.
    12. De Ayala Bilbao, Amaya & Hoyos Ramos, David & Mariel Chladkova, Petr, 2012. "Landscape valuation through discrete choice experiments: Current practice and future research reflections," BILTOKI 1134-8984, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
    13. Sergio Colombo & Nick Hanley & Jordan Louviere, 2009. "Modeling preference heterogeneity in stated choice data: an analysis for public goods generated by agriculture," Agricultural Economics, International Association of Agricultural Economists, vol. 40(3), pages 307-322, May.
    14. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    15. Tinessa, Fiore, 2021. "Closed-form random utility models with mixture distributions of random utilities: Exploring finite mixtures of qGEV models," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 262-288.
    16. Jin, Jianjun & He, Rui & Wang, Wenyu & Gong, Haozhou, 2018. "Valuing cultivated land protection: A contingent valuation and choice experiment study in China," Land Use Policy, Elsevier, vol. 74(C), pages 214-219.
    17. J. Price & D. Dupont & W. Adamowicz, 2017. "As Time Goes By: Examination of Temporal Stability Across Stated Preference Question Formats," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(3), pages 643-662, November.
    18. Mikołaj Czajkowski & Nick Hanley & Jacob LaRiviere, 2016. "Controlling for the Effects of Information in a Public Goods Discrete Choice Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(3), pages 523-544, March.
    19. Novikova, Anastasija & Rocchi, Lucia & Vitunskienė, Vlada, 2017. "Assessing the benefit of the agroecosystem services: Lithuanian preferences using a latent class approach," Land Use Policy, Elsevier, vol. 68(C), pages 277-286.
    20. Luís C. Rodrigues & Jeroen C. J. M. Bergh & Maria L. Loureiro & Paulo A. L. D. Nunes & Sergio Rossi, 2016. "The Cost of Mediterranean Sea Warming and Acidification: A Choice Experiment Among Scuba Divers at Medes Islands, Spain," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(2), pages 289-311, February.

    More about this item

    Keywords

    Research Methods/ Statistical Methods;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:uwauwp:235373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aruwaau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.