IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v61y2015i1p109-138.html
   My bibliography  Save this article

Analytical characterizations of some classes of optimal strongly attack-tolerant networks and their Laplacian spectra

Author

Listed:
  • Alexander Veremyev
  • Vladimir Boginski
  • Eduardo Pasiliao

Abstract

This paper analytically characterizes certain classes of low-diameter strongly attack-tolerant networks of arbitrary size, which are globally optimal in the sense that they contain the minimum possible number of edges. Strong attack tolerance property of level $$R$$ R implies that a network preserves connectivity and diameter after the deletion of up to $$R-1$$ R - 1 network elements (vertices and/or edges). In addition to identifying such optimal network configurations, we explicitly derive their entire Laplacian spectra, that is, all eigenvalues and eigenvectors of the graph Laplacian matrix. Each of these eigenvalues is by itself a solution to a global optimization problem; thus, the results of this study show that these optimization problems yield analytical solutions for the considered classes of networks. As an important special case, we show that the algebraic connectivity (i.e., the second-smallest eigenvalue of the Laplacian) considered as a function on all networks with fixed vertex connectivity $$R$$ R reaches its maximum on the optimal $$R$$ R -robust 2-club, which has diameter 2 and strong attack tolerance of level $$R$$ R . We also demonstrate that the obtained results have direct implications on the exact calculation of convergence speed of consensus algorithms utilizing the entire Laplacian spectrum, which is in contrast to traditionally used simulation-based estimates through just the algebraic connectivity. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Alexander Veremyev & Vladimir Boginski & Eduardo Pasiliao, 2015. "Analytical characterizations of some classes of optimal strongly attack-tolerant networks and their Laplacian spectra," Journal of Global Optimization, Springer, vol. 61(1), pages 109-138, January.
  • Handle: RePEc:spr:jglopt:v:61:y:2015:i:1:p:109-138
    DOI: 10.1007/s10898-014-0141-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-014-0141-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-014-0141-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Veremyev, Alexander & Boginski, Vladimir, 2012. "Identifying large robust network clusters via new compact formulations of maximum k-club problems," European Journal of Operational Research, Elsevier, vol. 218(2), pages 316-326.
    2. Balabhaskar Balasundaram & Sergiy Butenko & Svyatoslav Trukhanov, 2005. "Novel Approaches for Analyzing Biological Networks," Journal of Combinatorial Optimization, Springer, vol. 10(1), pages 23-39, August.
    3. Bourjolly, Jean-Marie & Laporte, Gilbert & Pesant, Gilles, 2002. "An exact algorithm for the maximum k-club problem in an undirected graph," European Journal of Operational Research, Elsevier, vol. 138(1), pages 21-28, April.
    4. Robert Mokken, 1979. "Cliques, clubs and clans," Quality & Quantity: International Journal of Methodology, Springer, vol. 13(2), pages 161-173, April.
    5. Luís Gouveia & Pedro Patrício & Amaro Sousa, 2008. "Hop-Constrained Node Survivable Network Design: An Application to MPLS over WDM," Networks and Spatial Economics, Springer, vol. 8(1), pages 3-21, March.
    6. BOTTON, Quentin & FORTZ, Bernard & GOUVEIA, Luis & POSS, Michael, 2011. "Benders decomposition for the hop-constrained survivable network design problem," LIDAM Discussion Papers CORE 2011037, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Pattillo, Jeffrey & Youssef, Nataly & Butenko, Sergiy, 2013. "On clique relaxation models in network analysis," European Journal of Operational Research, Elsevier, vol. 226(1), pages 9-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alla Kammerdiner & Alexander Veremyev & Eduardo Pasiliao, 2017. "On Laplacian spectra of parametric families of closely connected networks with application to cooperative control," Journal of Global Optimization, Springer, vol. 67(1), pages 187-205, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Veremyev, Alexander & Boginski, Vladimir & Pasiliao, Eduardo L. & Prokopyev, Oleg A., 2022. "On integer programming models for the maximum 2-club problem and its robust generalizations in sparse graphs," European Journal of Operational Research, Elsevier, vol. 297(1), pages 86-101.
    2. Komusiewicz, Christian & Nichterlein, André & Niedermeier, Rolf & Picker, Marten, 2019. "Exact algorithms for finding well-connected 2-clubs in sparse real-world graphs: Theory and experiments," European Journal of Operational Research, Elsevier, vol. 275(3), pages 846-864.
    3. Buchanan, Austin & Sung, Je Sang & Boginski, Vladimir & Butenko, Sergiy, 2014. "On connected dominating sets of restricted diameter," European Journal of Operational Research, Elsevier, vol. 236(2), pages 410-418.
    4. Foad Mahdavi Pajouh & Balabhaskar Balasundaram & Illya V. Hicks, 2016. "On the 2-Club Polytope of Graphs," Operations Research, INFORMS, vol. 64(6), pages 1466-1481, December.
    5. Yezerska, Oleksandra & Mahdavi Pajouh, Foad & Butenko, Sergiy, 2017. "On biconnected and fragile subgraphs of low diameter," European Journal of Operational Research, Elsevier, vol. 263(2), pages 390-400.
    6. Yajun Lu & Hosseinali Salemi & Balabhaskar Balasundaram & Austin Buchanan, 2022. "On Fault-Tolerant Low-Diameter Clusters in Graphs," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3181-3199, November.
    7. Filipa D. Carvalho & Maria Teresa Almeida, 2017. "The triangle k-club problem," Journal of Combinatorial Optimization, Springer, vol. 33(3), pages 814-846, April.
    8. Almeida, Maria Teresa & Carvalho, Filipa D., 2014. "An analytical comparison of the LP relaxations of integer models for the k-club problem," European Journal of Operational Research, Elsevier, vol. 232(3), pages 489-498.
    9. Oleksandra Yezerska & Foad Mahdavi Pajouh & Alexander Veremyev & Sergiy Butenko, 2019. "Exact algorithms for the minimum s-club partitioning problem," Annals of Operations Research, Springer, vol. 276(1), pages 267-291, May.
    10. Balasundaram, Balabhaskar & Borrero, Juan S. & Pan, Hao, 2022. "Graph signatures: Identification and optimization," European Journal of Operational Research, Elsevier, vol. 296(3), pages 764-775.
    11. Foad Mahdavi Pajouh & Esmaeel Moradi & Balabhaskar Balasundaram, 2017. "Detecting large risk-averse 2-clubs in graphs with random edge failures," Annals of Operations Research, Springer, vol. 249(1), pages 55-73, February.
    12. Shahram Shahinpour & Sergiy Butenko, 2013. "Algorithms for the maximum k-club problem in graphs," Journal of Combinatorial Optimization, Springer, vol. 26(3), pages 520-554, October.
    13. Grigory Pastukhov & Alexander Veremyev & Vladimir Boginski & Eduardo L. Pasiliao, 2014. "Optimal design and augmentation of strongly attack-tolerant two-hop clusters in directed networks," Journal of Combinatorial Optimization, Springer, vol. 27(3), pages 462-486, April.
    14. Chitra Balasubramaniam & Sergiy Butenko, 2017. "On robust clusters of minimum cardinality in networks," Annals of Operations Research, Springer, vol. 249(1), pages 17-37, February.
    15. Maciej Rysz & Foad Mahdavi Pajouh & Pavlo Krokhmal & Eduardo L. Pasiliao, 2018. "Identifying risk-averse low-diameter clusters in graphs with stochastic vertex weights," Annals of Operations Research, Springer, vol. 262(1), pages 89-108, March.
    16. Carvalho, Filipa D. & Almeida, M. Teresa, 2011. "Upper bounds and heuristics for the 2-club problem," European Journal of Operational Research, Elsevier, vol. 210(3), pages 489-494, May.
    17. Veremyev, Alexander & Boginski, Vladimir, 2012. "Identifying large robust network clusters via new compact formulations of maximum k-club problems," European Journal of Operational Research, Elsevier, vol. 218(2), pages 316-326.
    18. Timo Gschwind & Stefan Irnich & Fabio Furini & Roberto Wolfler Calvo, 2017. "A Branch-and-Price Framework for Decomposing Graphs into Relaxed Cliques," Working Papers 1723, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    19. Timo Gschwind & Stefan Irnich & Fabio Furini & Roberto Wol?er Calvo, 2015. "Social Network Analysis and Community Detection by Decomposing a Graph into Relaxed Cliques," Working Papers 1520, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    20. Timo Gschwind & Stefan Irnich & Fabio Furini & Roberto Wolfler Calvo, 2017. "Social Network Analysis and Community Detection by Decomposing a Graph into Relaxed Cliques," Working Papers 1722, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:61:y:2015:i:1:p:109-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.