IDEAS home Printed from https://ideas.repec.org/a/spr/aqjoor/v18y2020i3d10.1007_s10288-020-00455-w.html
   My bibliography  Save this article

Mathematical programming formulations for the alternating current optimal power flow problem

Author

Listed:
  • Dan Bienstock

    (Columbia University)

  • Mauro Escobar

    (Institut Polytechnique de Paris)

  • Claudio Gentile

    (IASI, CNR)

  • Leo Liberti

    (Institut Polytechnique de Paris)

Abstract

Power flow refers to the injection of power on the lines of an electrical grid, so that all the injections at the nodes form a consistent flow within the network. Optimality, in this setting, is usually intended as the minimization of the cost of generating power. Current can either be direct or alternating: while the former yields approximate linear programming formulations, the latter yields formulations of a much more interesting sort: namely, nonconvex nonlinear programs in complex numbers. In this technical survey, we derive formulation variants and relaxations of the alternating current optimal power flow problem.

Suggested Citation

  • Dan Bienstock & Mauro Escobar & Claudio Gentile & Leo Liberti, 2020. "Mathematical programming formulations for the alternating current optimal power flow problem," 4OR, Springer, vol. 18(3), pages 249-292, September.
  • Handle: RePEc:spr:aqjoor:v:18:y:2020:i:3:d:10.1007_s10288-020-00455-w
    DOI: 10.1007/s10288-020-00455-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10288-020-00455-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10288-020-00455-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amir Beck & Yuval Beck & Yoash Levron & Alex Shtof & Luba Tetruashvili, 2018. "Globally solving a class of optimal power flow problems in radial networks by tree reduction," Journal of Global Optimization, Springer, vol. 72(3), pages 373-402, November.
    2. Burak Kocuk & Santanu S. Dey & X. Andy Sun, 2016. "Strong SOCP Relaxations for the Optimal Power Flow Problem," Operations Research, INFORMS, vol. 64(6), pages 1177-1196, December.
    3. Ambros M. Gleixner & Timo Berthold & Benjamin Müller & Stefan Weltge, 2017. "Three enhancements for optimization-based bound tightening," Journal of Global Optimization, Springer, vol. 67(4), pages 731-757, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sander Claeys & Marta Vanin & Frederik Geth & Geert Deconinck, 2021. "Applications of optimization models for electricity distribution networks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    2. Yves Crama & Michel Grabisch & Silvano Martello, 2022. "Preface," Annals of Operations Research, Springer, vol. 314(1), pages 1-3, July.
    3. Jens Hönen & Johann L. Hurink & Bert Zwart, 2023. "A classification scheme for local energy trading," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 85-118, March.
    4. Yves Crama & Michel Grabisch & Silvano Martello, 2021. "4OR comes of age," 4OR, Springer, vol. 19(1), pages 1-13, March.
    5. Jie Wang & Victor Magron, 2022. "Exploiting Sparsity in Complex Polynomial Optimization," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 335-359, January.
    6. Daniel Bienstock & Mauro Escobar & Claudio Gentile & Leo Liberti, 2022. "Mathematical programming formulations for the alternating current optimal power flow problem," Annals of Operations Research, Springer, vol. 314(1), pages 277-315, July.
    7. Kevin-Martin Aigner & Robert Burlacu & Frauke Liers & Alexander Martin, 2023. "Solving AC Optimal Power Flow with Discrete Decisions to Global Optimality," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 458-474, March.
    8. Bichler, Martin & Knörr, Johannes, 2023. "Getting prices right on electricity spot markets: On the economic impact of advanced power flow models," Energy Economics, Elsevier, vol. 126(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Bienstock & Mauro Escobar & Claudio Gentile & Leo Liberti, 2022. "Mathematical programming formulations for the alternating current optimal power flow problem," Annals of Operations Research, Springer, vol. 314(1), pages 277-315, July.
    2. Kevin-Martin Aigner & Robert Burlacu & Frauke Liers & Alexander Martin, 2023. "Solving AC Optimal Power Flow with Discrete Decisions to Global Optimality," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 458-474, March.
    3. Brais González-Rodríguez & Joaquín Ossorio-Castillo & Julio González-Díaz & Ángel M. González-Rueda & David R. Penas & Diego Rodríguez-Martínez, 2023. "Computational advances in polynomial optimization: RAPOSa, a freely available global solver," Journal of Global Optimization, Springer, vol. 85(3), pages 541-568, March.
    4. Savelli, Iacopo & Morstyn, Thomas, 2021. "Electricity prices and tariffs to keep everyone happy: A framework for fixed and nodal prices coexistence in distribution grids with optimal tariffs for investment cost recovery," Omega, Elsevier, vol. 103(C).
    5. Jaromił Najman & Dominik Bongartz & Alexander Mitsos, 2021. "Linearization of McCormick relaxations and hybridization with the auxiliary variable method," Journal of Global Optimization, Springer, vol. 80(4), pages 731-756, August.
    6. Skolfield, J. Kyle & Escobedo, Adolfo R., 2022. "Operations research in optimal power flow: A guide to recent and emerging methodologies and applications," European Journal of Operational Research, Elsevier, vol. 300(2), pages 387-404.
    7. Guanglei Wang & Hassan Hijazi, 2018. "Mathematical programming methods for microgrid design and operations: a survey on deterministic and stochastic approaches," Computational Optimization and Applications, Springer, vol. 71(2), pages 553-608, November.
    8. Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.
    9. Amir Ahmadi-Javid & Pooya Hoseinpour, 2022. "Convexification of Queueing Formulas by Mixed-Integer Second-Order Cone Programming: An Application to a Discrete Location Problem with Congestion," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2621-2633, September.
    10. Liu, Jia & Zeng, Peter Pingliang & Xing, Hao & Li, Yalou & Wu, Qiuwei, 2020. "Hierarchical duality-based planning of transmission networks coordinating active distribution network operation," Energy, Elsevier, vol. 213(C).
    11. Le Cadre, Hélène & Mezghani, Ilyès & Papavasiliou, Anthony, 2019. "A game-theoretic analysis of transmission-distribution system operator coordination," European Journal of Operational Research, Elsevier, vol. 274(1), pages 317-339.
    12. Artur M. Schweidtmann & Alexander Mitsos, 2019. "Deterministic Global Optimization with Artificial Neural Networks Embedded," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 925-948, March.
    13. Haoxiang Yang & David P. Morton & Chaithanya Bandi & Krishnamurthy Dvijotham, 2021. "Robust Optimization for Electricity Generation," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 336-351, January.
    14. Jay, Devika & Swarup, K.S., 2021. "A comprehensive survey on reactive power ancillary service markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    15. Ratha, Anubhav & Pinson, Pierre & Le Cadre, Hélène & Virag, Ana & Kazempour, Jalal, 2023. "Moving from linear to conic markets for electricity," European Journal of Operational Research, Elsevier, vol. 309(2), pages 762-783.
    16. Zhang, Haoyang & Zhan, Sen & Kok, Koen & Paterakis, Nikolaos G., 2024. "Establishing a hierarchical local market structure using multi-cut Benders decomposition," Applied Energy, Elsevier, vol. 363(C).
    17. Subramanian, Vignesh & Feijoo, Felipe & Sankaranarayanan, Sriram & Melendez, Kevin & Das, Tapas K., 2022. "A bilevel conic optimization model for routing and charging of EV fleets serving long distance delivery networks," Energy, Elsevier, vol. 251(C).
    18. Victor Reyes & Ignacio Araya, 2023. "Non-Convex Optimization: Using Preconditioning Matrices for Optimally Improving Variable Bounds in Linear Relaxations," Mathematics, MDPI, vol. 11(16), pages 1-19, August.
    19. Puming Wang & Liqin Zheng & Tianyi Diao & Shengquan Huang & Xiaoqing Bai, 2023. "Robust Bilevel Optimal Dispatch of Park Integrated Energy System Considering Renewable Energy Uncertainty," Energies, MDPI, vol. 16(21), pages 1-23, October.
    20. Wogrin, S. & Tejada-Arango, D. & Delikaraoglou, S. & Botterud, A., 2020. "Assessing the impact of inertia and reactive power constraints in generation expansion planning," Applied Energy, Elsevier, vol. 280(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aqjoor:v:18:y:2020:i:3:d:10.1007_s10288-020-00455-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.