IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v57y2009i3p701-713.html
   My bibliography  Save this article

Global Optimization for Generalized Geometric Programs with Mixed Free-Sign Variables

Author

Listed:
  • Han-Lin Li

    (Institute of Information Management, National Chiao Tung University, Taiwan, Republic of China)

  • Hao-Chun Lu

    (Institute of Information Management, National Chiao Tung University, Taiwan, Republic of China)

Abstract

Many optimization problems are formulated as generalized geometric programming (GGP) containing signomial terms f ( X )· g ( Y ), where X and Y are continuous and discrete free-sign vectors, respectively. By effectively convexifying f ( X ) and linearizing g ( Y ), this study globally solves a GGP with a lower number of binary variables than are used in current GGP methods. Numerical experiments demonstrate the computational efficiency of the proposed method.

Suggested Citation

  • Han-Lin Li & Hao-Chun Lu, 2009. "Global Optimization for Generalized Geometric Programs with Mixed Free-Sign Variables," Operations Research, INFORMS, vol. 57(3), pages 701-713, June.
  • Handle: RePEc:inm:oropre:v:57:y:2009:i:3:p:701-713
    DOI: 10.1287/opre.1080.0586
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1080.0586
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1080.0586?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stephen P. Boyd & Seung-Jean Kim & Dinesh D. Patil & Mark A. Horowitz, 2005. "Digital Circuit Optimization via Geometric Programming," Operations Research, INFORMS, vol. 53(6), pages 899-932, December.
    2. Hao Cheng & Shu-Cherng Fang & John Lavery, 2005. "A Geometric Programming Framework for Univariate Cubic L 1 Smoothing Splines," Annals of Operations Research, Springer, vol. 133(1), pages 229-248, January.
    3. Ecker, J.G. & Wiebking, R.D., 1978. "Optimal design of a dry-type natural-draft cooling tower by geometric programming," LIDAM Reprints CORE 355, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Han-Lin Li, 1999. "Incorporating Competence Sets of Decision Makers by Deduction Graphs," Operations Research, INFORMS, vol. 47(2), pages 209-220, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Haoxiang & Wang, David Z.W., 2015. "Global optimization method for network design problem with stochastic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 20-39.
    2. Warren P. Adams & Stephen M. Henry, 2012. "Base-2 Expansions for Linearizing Products of Functions of Discrete Variables," Operations Research, INFORMS, vol. 60(6), pages 1477-1490, December.
    3. Hao-Chun Lu, 2017. "Improved logarithmic linearizing method for optimization problems with free-sign pure discrete signomial terms," Journal of Global Optimization, Springer, vol. 68(1), pages 95-123, May.
    4. Han-Lin Li & Hao-Chun Lu & Chia-Hui Huang & Nian-Ze Hu, 2009. "A Superior Representation Method for Piecewise Linear Functions," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 314-321, May.
    5. Yiduo Zhan & Qipeng P. Zheng & Chung-Li Tseng & Eduardo L. Pasiliao, 2018. "An accelerated extended cutting plane approach with piecewise linear approximations for signomial geometric programming," Journal of Global Optimization, Springer, vol. 70(3), pages 579-599, March.
    6. Lu, Hao-Chun, 2020. "Indicator of power convex and exponential transformations for solving nonlinear problems containing posynomial terms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    7. Xu, Gongxian, 2014. "Global optimization of signomial geometric programming problems," European Journal of Operational Research, Elsevier, vol. 233(3), pages 500-510.
    8. Han-Lin Li & Yao-Huei Huang & Shu-Cherng Fang, 2017. "Linear Reformulation of Polynomial Discrete Programming for Fast Computation," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 108-122, February.
    9. Tseng, Chung-Li & Zhan, Yiduo & Zheng, Qipeng P. & Kumar, Manish, 2015. "A MILP formulation for generalized geometric programming using piecewise-linear approximations," European Journal of Operational Research, Elsevier, vol. 245(2), pages 360-370.
    10. Han-Lin Li & Yao-Huei Huang & Shu-Cherng Fang, 2013. "A Logarithmic Method for Reducing Binary Variables and Inequality Constraints in Solving Task Assignment Problems," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 643-653, November.
    11. Hao-Chun Lu & Liming Yao, 2019. "Efficient Convexification Strategy for Generalized Geometric Programming Problems," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 226-234, April.
    12. Qi An & Shu-Cherng Fang & Tiantian Nie & Shan Jiang, 2018. "$$\ell _1$$ ℓ 1 -Norm Based Central Point Analysis for Asymmetric Radial Data," Annals of Data Science, Springer, vol. 5(3), pages 469-486, September.
    13. Lin, Ming-Hua & Tsai, Jung-Fa, 2012. "Range reduction techniques for improving computational efficiency in global optimization of signomial geometric programming problems," European Journal of Operational Research, Elsevier, vol. 216(1), pages 17-25.
    14. Yang, Fang & Huang, Yao-Huei, 2020. "Linearization technique with superior expressions for centralized planning problem with discount policy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    15. Zejian Qin & Bingyuan Cao & Shu-Cherng Fang & Xiao-Peng Yang, 2018. "Geometric Programming with Discrete Variables Subject to Max-Product Fuzzy Relation Constraints," Discrete Dynamics in Nature and Society, Hindawi, vol. 2018, pages 1-8, April.
    16. Fukasawa, Ricardo & Naoum-Sawaya, Joe & Oliveira, Daniel, 2024. "The price-elastic knapsack problem," Omega, Elsevier, vol. 124(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Hao-Chun, 2020. "Indicator of power convex and exponential transformations for solving nonlinear problems containing posynomial terms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    2. Tan, Kim Hua & Zhan, YuanZhu & Ji, Guojun & Ye, Fei & Chang, Chingter, 2015. "Harvesting big data to enhance supply chain innovation capabilities: An analytic infrastructure based on deduction graph," International Journal of Production Economics, Elsevier, vol. 165(C), pages 223-233.
    3. Qingwei Jin & Lu Yu & John Lavery & Shu-Cherng Fang, 2012. "Univariate cubic L 1 interpolating splines based on the first derivative and on 5-point windows: analysis, algorithm and shape-preserving properties," Computational Optimization and Applications, Springer, vol. 51(2), pages 575-600, March.
    4. Chiu, Nan-Chieh & Fang, Shu-Cherng & Lavery, John E. & Lin, Jen-Yen & Wang, Yong, 2008. "Approximating term structure of interest rates using cubic L1 splines," European Journal of Operational Research, Elsevier, vol. 184(3), pages 990-1004, February.
    5. Zhan, Yuanzhu & Tan, Kim Hua, 2020. "An analytic infrastructure for harvesting big data to enhance supply chain performance," European Journal of Operational Research, Elsevier, vol. 281(3), pages 559-574.
    6. Hao-Chun Lu & Liming Yao, 2019. "Efficient Convexification Strategy for Generalized Geometric Programming Problems," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 226-234, April.
    7. Warren P. Adams & Stephen M. Henry, 2012. "Base-2 Expansions for Linearizing Products of Functions of Discrete Variables," Operations Research, INFORMS, vol. 60(6), pages 1477-1490, December.
    8. Xinlei Wang & Johan Lim & Seung-Jean Kim & Kyu Hahn, 2015. "Estimating cell probabilities in contingency tables with constraints on marginals/conditionals by geometric programming with applications," Computational Statistics, Springer, vol. 30(1), pages 107-129, March.
    9. Angelo Ciccazzo & Vittorio Latorre & Giampaolo Liuzzi & Stefano Lucidi & Francesco Rinaldi, 2015. "Derivative-Free Robust Optimization for Circuit Design," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 842-861, March.
    10. Amir Ardestani-Jaafari & Erick Delage, 2016. "Robust Optimization of Sums of Piecewise Linear Functions with Application to Inventory Problems," Operations Research, INFORMS, vol. 64(2), pages 474-494, April.
    11. Rashed Khanjani-Shiraz & Salman Khodayifar & Panos M. Pardalos, 2021. "Copula theory approach to stochastic geometric programming," Journal of Global Optimization, Springer, vol. 81(2), pages 435-468, October.
    12. Guillermo Angeris & Akshay Agrawal & Alex Evans & Tarun Chitra & Stephen Boyd, 2021. "Constant Function Market Makers: Multi-Asset Trades via Convex Optimization," Papers 2107.12484, arXiv.org.
    13. Seyed Ahmad Yazdian & Kamran Shahanaghi & Ahmad Makui, 2016. "Joint optimisation of price, warranty and recovery planning in remanufacturing of used products under linear and non-linear demand, return and cost functions," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(5), pages 1155-1175, April.
    14. Angelo Ciccazzo & Gianni Di Pillo & Vittorio Latorre, 2015. "A SVM Surrogate Model Based Method for Yield Optimization in Electronic Circuit Design," DIAG Technical Reports 2015-03, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    15. Huan Xu & Constantine Caramanis & Shie Mannor, 2012. "A Distributional Interpretation of Robust Optimization," Mathematics of Operations Research, INFORMS, vol. 37(1), pages 95-110, February.
    16. Belleh Fontem, 2023. "Robust Chance-Constrained Geometric Programming with Application to Demand Risk Mitigation," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 765-797, May.
    17. Hua Zhou & Kenneth Lange, 2015. "Path following in the exact penalty method of convex programming," Computational Optimization and Applications, Springer, vol. 61(3), pages 609-634, July.
    18. Hao-Chun Lu, 2017. "Improved logarithmic linearizing method for optimization problems with free-sign pure discrete signomial terms," Journal of Global Optimization, Springer, vol. 68(1), pages 95-123, May.
    19. Sun, Yubiao & Guan, Zhiqiang & Hooman, Kamel, 2017. "A review on the performance evaluation of natural draft dry cooling towers and possible improvements via inlet air spray cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 618-637.
    20. Wolfram Wiesemann & Daniel Kuhn & Berc Rustem, 2009. "Robust Resource Allocations in Temporal Networks," Working Papers 020, COMISEF.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:57:y:2009:i:3:p:701-713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.