IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v5y2018i2d10.1007_s40745-017-0126-z.html
   My bibliography  Save this article

Evaluation and Comparison of Estimators in the Gompertz Distribution

Author

Listed:
  • Sanku Dey

    (St. Anthony’s College)

  • Tanmay Kayal

    (Indian Institute of Technology Patna)

  • Yogesh Mani Tripathi

    (Indian Institute of Technology Patna)

Abstract

This article addresses the different methods of estimation of the probability density function and the cumulative distribution function for the Gompertz distribution. Following estimation methods are considered: maximum likelihood estimators, uniformly minimum variance unbiased estimators, least squares estimators, weighted least square estimators, percentile estimators, maximum product of spacings estimators, Cramér–von-Mises estimators, Anderson–Darling estimators. Monte Carlo simulations are performed to compare the behavior of the proposed methods of estimation for different sample sizes. Finally, one real data set and one simulated data set are analyzed for illustrative purposes.

Suggested Citation

  • Sanku Dey & Tanmay Kayal & Yogesh Mani Tripathi, 2018. "Evaluation and Comparison of Estimators in the Gompertz Distribution," Annals of Data Science, Springer, vol. 5(2), pages 235-258, June.
  • Handle: RePEc:spr:aodasc:v:5:y:2018:i:2:d:10.1007_s40745-017-0126-z
    DOI: 10.1007/s40745-017-0126-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-017-0126-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-017-0126-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yogesh Mani Tripathi & Tanmay Kayal & Sanku Dey, 2017. "Estimation of the PDF and the CDF of exponentiated moment exponential distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1282-1296, November.
    2. Kundu, Debasis & Raqab, Mohammad Z., 2005. "Generalized Rayleigh distribution: different methods of estimations," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 187-200, April.
    3. Badiollah Asrabadi, 1990. "Estimation in the pareto distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 37(1), pages 199-205, December.
    4. Yogesh Mani Tripathi & Amulya Kumar Mahto & Sanku Dey, 2017. "Efficient Estimation of the PDF and the CDF of a Generalized Logistic Distribution," Annals of Data Science, Springer, vol. 4(1), pages 63-81, March.
    5. Durot, Cécile & Huet, Sylvie & Koladjo, François & Robin, Stéphane, 2013. "Least-squares estimation of a convex discrete distribution," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 282-298.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amal S. Hassan & Salwa M. Assar & Kareem A. Ali & Heba F. Nagy, 2021. "Estimation of the density and cumulative distribution functions of the exponentiated Burr XII distribution," Statistics in Transition New Series, Polish Statistical Association, vol. 22(4), pages 171-189, December.
    2. Hassan Amal S. & Assar Salwa M. & Ali Kareem A. & Nagy Heba F., 2021. "Estimation of the density and cumulative distribution functions of the exponentiated Burr XII distribution," Statistics in Transition New Series, Polish Statistical Association, vol. 22(4), pages 171-189, December.
    3. Shama, M.S. & Dey, Sanku & Altun, Emrah & Afify, Ahmed Z., 2022. "The Gamma–Gompertz distribution: Theory and applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 689-712.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yogesh Mani Tripathi & Amulya Kumar Mahto & Sanku Dey, 2017. "Efficient Estimation of the PDF and the CDF of a Generalized Logistic Distribution," Annals of Data Science, Springer, vol. 4(1), pages 63-81, March.
    2. Amal S. Hassan & Salwa M. Assar & Kareem A. Ali & Heba F. Nagy, 2021. "Estimation of the density and cumulative distribution functions of the exponentiated Burr XII distribution," Statistics in Transition New Series, Polish Statistical Association, vol. 22(4), pages 171-189, December.
    3. Hassan Amal S. & Assar Salwa M. & Ali Kareem A. & Nagy Heba F., 2021. "Estimation of the density and cumulative distribution functions of the exponentiated Burr XII distribution," Statistics in Transition New Series, Polish Statistical Association, vol. 22(4), pages 171-189, December.
    4. Khan, Ruhul Ali, 2023. "Two-sample nonparametric test for proportional reversed hazards," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    5. Yogesh Tripathi & Somesh Kumar & Constantinos Petropoulos, 2016. "Estimating the shape parameter of a Pareto distribution under restrictions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(1), pages 91-111, January.
    6. Gauss Cordeiro & Cláudio Cristino & Elizabeth Hashimoto & Edwin Ortega, 2013. "The beta generalized Rayleigh distribution with applications to lifetime data," Statistical Papers, Springer, vol. 54(1), pages 133-161, February.
    7. Giguelay, J. & Huet, S., 2018. "Testing k-monotonicity of a discrete distribution. Application to the estimation of the number of classes in a population," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 96-115.
    8. Hassan M. Okasha & Abdulkareem M. Basheer & A. H. El-Baz, 2021. "Marshall–Olkin Extended Inverse Weibull Distribution: Different Methods of Estimations," Annals of Data Science, Springer, vol. 8(4), pages 769-784, December.
    9. Elizabeth Hashimoto & Gauss Cordeiro & Edwin Ortega, 2013. "The new Neyman type A beta Weibull model with long-term survivors," Computational Statistics, Springer, vol. 28(3), pages 933-954, June.
    10. Ilhan Usta, 2013. "Different estimation methods for the parameters of the extended Burr XII distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(2), pages 397-414, February.
    11. Balabdaoui, Fadoua & Kulagina, Yulia, 2020. "Completely monotone distributions: Mixing, approximation and estimation of number of species," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    12. Hassan S. Bakouch & Abdus Saboor & Muhammad Nauman Khan, 2021. "Modified Beta Linear Exponential Distribution with Hydrologic Applications," Annals of Data Science, Springer, vol. 8(1), pages 131-157, March.
    13. Ahmad, Abd EL-Baset A. & Ghazal, M.G.M., 2020. "Exponentiated additive Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    14. Balabdaoui, Fadoua & Durot, Cécile & Koladjo, Babagnidé François, 2018. "Testing convexity of a discrete distribution," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 8-13.
    15. Maha A. D. Aldahlan & Ahmed Z. Afify, 2020. "The Odd Exponentiated Half-Logistic Exponential Distribution: Estimation Methods and Application to Engineering Data," Mathematics, MDPI, vol. 8(10), pages 1-26, October.
    16. Rasool Roozegar & G. G. Hamedani & Leila Amiri & Fatemeh Esfandiyari, 2020. "A New Family of Lifetime Distributions: Theory, Application and Characterizations," Annals of Data Science, Springer, vol. 7(1), pages 109-138, March.
    17. Edwin Ortega & Gauss Cordeiro & Michael Kattan, 2013. "The log-beta Weibull regression model with application to predict recurrence of prostate cancer," Statistical Papers, Springer, vol. 54(1), pages 113-132, February.
    18. Xiao Wang & Xinmin Li, 2021. "Generalized Confidence Intervals for Zero-Inflated Pareto Distribution," Mathematics, MDPI, vol. 9(24), pages 1-9, December.
    19. Sasikumar Padmini Arun & Christophe Chesneau & Radhakumari Maya & Muhammed Rasheed Irshad, 2023. "Farlie–Gumbel–Morgenstern Bivariate Moment Exponential Distribution and Its Inferences Based on Concomitants of Order Statistics," Stats, MDPI, vol. 6(1), pages 1-15, February.
    20. Singla, Neetu & Jain, Kanchan & Kumar Sharma, Suresh, 2012. "The Beta Generalized Weibull distribution: Properties and applications," Reliability Engineering and System Safety, Elsevier, vol. 102(C), pages 5-15.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:5:y:2018:i:2:d:10.1007_s40745-017-0126-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.