IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v4y2017i1d10.1007_s40745-016-0094-8.html
   My bibliography  Save this article

A New Extension of Weibull Distribution with Application to Lifetime Data

Author

Listed:
  • Sanku Dey

    (King Abdulaziz University)

  • Vikas Kumar Sharma

    (Institute of Infrastructure, Technology, Research and Management (IITRAM))

  • Mhamed Mesfioui

    (King Abdulaziz University
    Université du Québec à Trois-Rivières)

Abstract

The Weibull distribution has been generalized by many authors in recent years. Here, we introduce a new generalization, called alpha-power transformed Weibull distribution that provides better fits than the Weibull distribution and some of its known generalizations. The distribution contains alpha-power transformed exponential and alpha-power transformed Rayleigh distributions as special cases. Various properties of the proposed distribution, including explicit expressions for the quantiles, mode, moments, conditional moments, mean residual lifetime, stochastic ordering, Bonferroni and Lorenz curve, stress–strength reliability and order statistics are derived. The distribution is capable of modeling monotonically increasing, decreasing, constant, bathtub, upside-down bathtub and increasing–decreasing–increasing hazard rates. The maximum likelihood estimators of unknown parameters cannot be obtained in explicit forms, and they have to be obtained by solving non-linear equations only. Two data sets have been analyzed to show how the proposed models work in practice. Further, a bivariate extension based on Marshall–Olkin and copula concept of the proposed model are developed but the properties of the distribution not considered in detail in this paper that can be addressed in future research.

Suggested Citation

  • Sanku Dey & Vikas Kumar Sharma & Mhamed Mesfioui, 2017. "A New Extension of Weibull Distribution with Application to Lifetime Data," Annals of Data Science, Springer, vol. 4(1), pages 31-61, March.
  • Handle: RePEc:spr:aodasc:v:4:y:2017:i:1:d:10.1007_s40745-016-0094-8
    DOI: 10.1007/s40745-016-0094-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-016-0094-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-016-0094-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    2. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    3. Ferreira, Jose T.A.S. & Steel, Mark F.J., 2006. "A Constructive Representation of Univariate Skewed Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 823-829, June.
    4. Alexander, Carol & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Sarabia, José María, 2012. "Generalized beta-generated distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1880-1897.
    5. Bebbington, Mark & Lai, Chin-Diew & Zitikis, RiÄ ardas, 2007. "A flexible Weibull extension," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 719-726.
    6. Richard L. Smith & J. C. Naylor, 1987. "A Comparison of Maximum Likelihood and Bayesian Estimators for the Three‐Parameter Weibull Distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 358-369, November.
    7. Zhang, Tieling & Xie, Min, 2011. "On the upper truncated Weibull distribution and its reliability implications," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 194-200.
    8. Ayman Alzaatreh & Carl Lee & Felix Famoye, 2013. "A new method for generating families of continuous distributions," METRON, Springer;Sapienza Università di Roma, vol. 71(1), pages 63-79, June.
    9. Morais, Alice Lemos & Barreto-Souza, Wagner, 2011. "A compound class of Weibull and power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1410-1425, March.
    10. Singla, Neetu & Jain, Kanchan & Kumar Sharma, Suresh, 2012. "The Beta Generalized Weibull distribution: Properties and applications," Reliability Engineering and System Safety, Elsevier, vol. 102(C), pages 5-15.
    11. Samuel Kotz & Donatella Vicari, 2005. "Survey of developments in the theory of continuous skewed distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 225-261.
    12. Sarhan, Ammar M. & Apaloo, Joseph, 2013. "Exponentiated modified Weibull extension distribution," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 137-144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanku Dey & Indranil Ghosh & Devendra Kumar, 2019. "Alpha-Power Transformed Lindley Distribution: Properties and Associated Inference with Application to Earthquake Data," Annals of Data Science, Springer, vol. 6(4), pages 623-650, December.
    2. Pramendra Singh Pundir & Puneet Kumar Gupta, 2018. "Reliability Estimation in Load-Sharing System Model with Application to Real Data," Annals of Data Science, Springer, vol. 5(1), pages 69-91, March.
    3. Shumaila Ihtisham & Alamgir Khalil & Sadaf Manzoor & Sajjad Ahmad Khan & Amjad Ali, 2019. "Alpha-Power Pareto distribution: Its properties and applications," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-15, June.
    4. Wei Zhao & Saima K Khosa & Zubair Ahmad & Muhammad Aslam & Ahmed Z Afify, 2020. "Type-I heavy tailed family with applications in medicine, engineering and insurance," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-24, August.
    5. Hiba Zeyada Muhammed, 2023. "A Class of Bivariate Modified Weighted Distributions: Properties and Applications," Annals of Data Science, Springer, vol. 10(4), pages 875-906, August.
    6. Ateq Alghamedi & Sanku Dey & Devendra Kumar & Saeed A. Dobbah, 2020. "A New Extension of Extended Exponential Distribution with Applications," Annals of Data Science, Springer, vol. 7(1), pages 139-162, March.
    7. Hadeel S Klakattawi, 2022. "Survival analysis of cancer patients using a new extended Weibull distribution," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-20, February.
    8. Isidro Jesús González-Hernández & Rafael Granillo-Macías & Carlos Rondero-Guerrero & Isaías Simón-Marmolejo, 2021. "Marshall-Olkin distributions: a bibliometric study," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 9005-9029, November.
    9. Sandeep Kumar Maurya & Saralees Nadarajah, 2021. "Poisson Generated Family of Distributions: A Review," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 484-540, November.
    10. Zubair Ahmad & M. Elgarhy & G. G. Hamedani, 2018. "A new Weibull-X family of distributions: properties, characterizations and applications," Journal of Statistical Distributions and Applications, Springer, vol. 5(1), pages 1-18, December.
    11. Muhammad Ijaz & Syed Muhammad Asim & Alamgir & Muhammad Farooq & Sajjad Ahmad Khan & Sadaf Manzoor, 2020. "A Gull Alpha Power Weibull distribution with applications to real and simulated data," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    2. Abba, Badamasi & Wang, Hong & Bakouch, Hassan S., 2022. "A reliability and survival model for one and two failure modes system with applications to complete and censored datasets," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    3. He, Bo & Cui, Weimin & Du, Xiaofeng, 2016. "An additive modified Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 28-37.
    4. Ahmad, Abd EL-Baset A. & Ghazal, M.G.M., 2020. "Exponentiated additive Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    5. Boikanyo Makubate & Fastel Chipepa & Broderick Oluyede & Peter O. Peter, 2021. "The Marshall-Olkin Half Logistic-G Family of Distributions With Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(2), pages 120-120, March.
    6. Christophe Ley, 2014. "Flexible Modelling in Statistics: Past, present and Future," Working Papers ECARES ECARES 2014-42, ULB -- Universite Libre de Bruxelles.
    7. Francesca Condino & Filippo Domma, 2017. "A new distribution function with bounded support: the reflected generalized Topp-Leone power series distribution," METRON, Springer;Sapienza Università di Roma, vol. 75(1), pages 51-68, April.
    8. Prataviera, Fábio & Ortega, Edwin M.M. & Cordeiro, Gauss M. & Pescim, Rodrigo R. & Verssani, Bruna A.W., 2018. "A new generalized odd log-logistic flexible Weibull regression model with applications in repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 13-26.
    9. Rasool Roozegar & Saralees Nadarajah & Eisa Mahmoudi, 2022. "The Power Series Exponential Power Series Distributions with Applications to Failure Data Sets," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 44-78, May.
    10. Muhammad H Tahir & Gauss M. Cordeiro, 2016. "Compounding of distributions: a survey and new generalized classes," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-35, December.
    11. Almalki, Saad J. & Yuan, Jingsong, 2013. "A new modified Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 164-170.
    12. Muhammad H. Tahir & Muhammad Adnan Hussain & Gauss M. Cordeiro & M. El-Morshedy & M. S. Eliwa, 2020. "A New Kumaraswamy Generalized Family of Distributions with Properties, Applications, and Bivariate Extension," Mathematics, MDPI, vol. 8(11), pages 1-28, November.
    13. Fiaz Ahmad Bhatti & G. G. Hamedani & Mustafa Ç. Korkmaz & Munir Ahmad, 2018. "The transmuted geometric-quadratic hazard rate distribution: development, properties, characterizations and applications," Journal of Statistical Distributions and Applications, Springer, vol. 5(1), pages 1-23, December.
    14. Sandeep Kumar Maurya & Saralees Nadarajah, 2021. "Poisson Generated Family of Distributions: A Review," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 484-540, November.
    15. Alzaatreh, Ayman & Famoye, Felix & Lee, Carl, 2014. "The gamma-normal distribution: Properties and applications," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 67-80.
    16. Abdul Ghaniyyu Abubakari & Claudio Chadli Kandza-Tadi & Edwin Moyo, 2023. "Modified Beta Inverse Flexible Weibull Extension Distribution," Annals of Data Science, Springer, vol. 10(3), pages 589-617, June.
    17. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    18. Gokarna R. Aryal & Keshav P. Pokhrel & Netra Khanal & Chris P. Tsokos, 2019. "Reliability Models Using the Composite Generalizers of Weibull Distribution," Annals of Data Science, Springer, vol. 6(4), pages 807-829, December.
    19. Aliyu Ismail Ishaq & Alfred Adewole Abiodun, 2020. "The Maxwell–Weibull Distribution in Modeling Lifetime Datasets," Annals of Data Science, Springer, vol. 7(4), pages 639-662, December.
    20. A. A. Ogunde & S. T. Fayose & B. Ajayi & D. O. Omosigho, 2020. "Properties, Inference and Applications of Alpha Power Extended Inverted Weibull Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(6), pages 1-90, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:4:y:2017:i:1:d:10.1007_s40745-016-0094-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.