IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v7y2020i1d10.1007_s40745-020-00240-w.html
   My bibliography  Save this article

A New Extension of Extended Exponential Distribution with Applications

Author

Listed:
  • Ateq Alghamedi

    (King Abdulaziz University)

  • Sanku Dey

    (St. Anthony’s College)

  • Devendra Kumar

    (Central University of Haryana)

  • Saeed A. Dobbah

    (King Abdulaziz University)

Abstract

We introduce a new lifetime distribution, called the alpha-power transformed extended exponential distribution which generalizes the extended exponential distribution proposed by Nadarajah and Haghighi (Statistics 45:543–558, 2011) to provide greater flexibility in modeling data from a practical point of view. The new model includes the exponential; extended exponential, and $$\alpha $$α power transformed exponential (Mahdavi and Kundu in Commun Stat Theory Methods, 2017) distributions as a special case. This distribution exhibits five hazard rate shapes such as constant, increasing, decreasing, bathtub and upside-down bathtub. Various properties of the proposed distribution, including explicit expressions for the quantiles, moments, conditional moments, stochastic ordering, Bonferroni and Lorenz curve, stress–strength reliability and order statistics are derived. The maximum likelihood estimators of the three unknown parameters of alpha-power transformed extended exponential distribution and the associated confidence intervals are obtained. A simulation study is carried out to examine the performances of the maximum likelihood estimates in terms of their bias and mean squared error using simulated samples. Finally, the potentiality of the distribution is analyzed by means of two real data sets. For the two real data sets, this distribution is found to be superior in its ability to sufficiently model the data as compared to the Weibull distribution, Generalized exponential distribution, Marshall–Olkin extended exponentiated exponential distribution and exponentiated Nadarajah–Haghighi distributions.

Suggested Citation

  • Ateq Alghamedi & Sanku Dey & Devendra Kumar & Saeed A. Dobbah, 2020. "A New Extension of Extended Exponential Distribution with Applications," Annals of Data Science, Springer, vol. 7(1), pages 139-162, March.
  • Handle: RePEc:spr:aodasc:v:7:y:2020:i:1:d:10.1007_s40745-020-00240-w
    DOI: 10.1007/s40745-020-00240-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-020-00240-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-020-00240-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Min-Tsai Lai, 2013. "Optimum number of minimal repairs for a system under increasing failure rate shock model with cumulative repair-cost limit," International Journal of Reliability and Safety, Inderscience Enterprises Ltd, vol. 7(2), pages 95-107.
    2. Sanku Dey & Indranil Ghosh & Devendra Kumar, 2019. "Alpha-Power Transformed Lindley Distribution: Properties and Associated Inference with Application to Earthquake Data," Annals of Data Science, Springer, vol. 6(4), pages 623-650, December.
    3. Lemonte, Artur J., 2013. "A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 149-170.
    4. Abbas Mahdavi & Debasis Kundu, 2017. "A new method for generating distributions with an application to exponential distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(13), pages 6543-6557, July.
    5. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    6. Amal S. Hassan & M. Elgarhy & Rokaya E. Mohamd & Sharifah Alrajhi, 2019. "On the Alpha Power Transformed Power Lindley Distribution," Journal of Probability and Statistics, Hindawi, vol. 2019, pages 1-13, January.
    7. Kus, Coskun, 2007. "A new lifetime distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4497-4509, May.
    8. Sanku Dey & Vikas Kumar Sharma & Mhamed Mesfioui, 2017. "A New Extension of Weibull Distribution with Application to Lifetime Data," Annals of Data Science, Springer, vol. 4(1), pages 31-61, March.
    9. Steve Bennett, 1983. "Log‐Logistic Regression Models for Survival Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 32(2), pages 165-171, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isidro Jesús González-Hernández & Rafael Granillo-Macías & Carlos Rondero-Guerrero & Isaías Simón-Marmolejo, 2021. "Marshall-Olkin distributions: a bibliometric study," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 9005-9029, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanku Dey & Indranil Ghosh & Devendra Kumar, 2019. "Alpha-Power Transformed Lindley Distribution: Properties and Associated Inference with Application to Earthquake Data," Annals of Data Science, Springer, vol. 6(4), pages 623-650, December.
    2. Sandeep Kumar Maurya & Saralees Nadarajah, 2021. "Poisson Generated Family of Distributions: A Review," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 484-540, November.
    3. Hadeel S Klakattawi, 2022. "Survival analysis of cancer patients using a new extended Weibull distribution," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-20, February.
    4. Shumaila Ihtisham & Alamgir Khalil & Sadaf Manzoor & Sajjad Ahmad Khan & Amjad Ali, 2019. "Alpha-Power Pareto distribution: Its properties and applications," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-15, June.
    5. Luis Carlos Méndez-González & Luis Alberto Rodríguez-Picón & Manuel Iván Rodríguez Borbón & Hansuk Sohn, 2023. "The Chen–Perks Distribution: Properties and Reliability Applications," Mathematics, MDPI, vol. 11(13), pages 1-19, July.
    6. Showkat Ahmad Lone & Tabassum Naz Sindhu & Marwa K. H. Hassan & Tahani A. Abushal & Sadia Anwar & Anum Shafiq, 2023. "Theoretical Structure and Applications of a Newly Enhanced Gumbel Type II Model," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    7. Joseph Thomas Eghwerido & Lawrence Chukwudumebi Nzei & Friday Ikechukwu Agu, 2021. "The Alpha Power Gompertz Distribution: Characterization, Properties, and Applications," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 449-475, February.
    8. Khan, Ruhul Ali, 2023. "Two-sample nonparametric test for proportional reversed hazards," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    9. A. A. Ogunde & S. T. Fayose & B. Ajayi & D. O. Omosigho, 2020. "Properties, Inference and Applications of Alpha Power Extended Inverted Weibull Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(6), pages 1-90, November.
    10. Al-Mutairi, D.K. & Ghitany, M.E. & Gupta, Ramesh C., 2011. "Estimation of reliability in a series system with random sample size," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 964-972, February.
    11. Abe, Toshihiro & Miyata, Yoichi & Shiohama, Takayuki, 2023. "Bayesian estimation for mode and anti-mode preserving circular distributions," Econometrics and Statistics, Elsevier, vol. 27(C), pages 136-160.
    12. Arthur Pewsey, 2018. "Parametric bootstrap edf-based goodness-of-fit testing for sinh–arcsinh distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 147-172, March.
    13. Rasool Roozegar & Saralees Nadarajah & Eisa Mahmoudi, 2022. "The Power Series Exponential Power Series Distributions with Applications to Failure Data Sets," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 44-78, May.
    14. Perepolkin, Dmytro & Goodrich, Benjamin & Sahlin, Ullrika, 2023. "The tenets of quantile-based inference in Bayesian models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    15. Bakouch, Hassan S. & Ristić, Miroslav M. & Asgharzadeh, A. & Esmaily, L. & Al-Zahrani, Bander M., 2012. "An exponentiated exponential binomial distribution with application," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1067-1081.
    16. Abdulkareem M. Basheer, 2022. "Marshall–Olkin Alpha Power Inverse Exponential Distribution: Properties and Applications," Annals of Data Science, Springer, vol. 9(2), pages 301-313, April.
    17. Matthias Wagener & Andriette Bekker & Mohammad Arashi, 2021. "Mastering the Body and Tail Shape of a Distribution," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    18. Mohsen Maleki & Darren Wraith & Reinaldo B. Arellano-Valle, 2019. "A flexible class of parametric distributions for Bayesian linear mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 543-564, June.
    19. Xiaofang He & Wangxue Chen & Wenshu Qian, 2020. "Maximum likelihood estimators of the parameters of the log-logistic distribution," Statistical Papers, Springer, vol. 61(5), pages 1875-1892, October.
    20. Feyza Günay & Mehmet Yilmaz, 2018. "Different Parameter Estimation Methods for Exponential Geometric Distribution and Its Applications in Lifetime Data Analysis," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 8(2), pages 36-43, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:7:y:2020:i:1:d:10.1007_s40745-020-00240-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.