IDEAS home Printed from https://ideas.repec.org/a/spr/jstada/v5y2018i1d10.1186_s40488-018-0085-8.html
   My bibliography  Save this article

The transmuted geometric-quadratic hazard rate distribution: development, properties, characterizations and applications

Author

Listed:
  • Fiaz Ahmad Bhatti

    (National College of Business Administration and Economic)

  • G. G. Hamedani

    (Marquette University)

  • Mustafa Ç. Korkmaz

    (Artvin Çoruh University)

  • Munir Ahmad

    (National College of Business Administration and Economic)

Abstract

We propose a five parameter transmuted geometric quadratic hazard rate (TG-QHR) distribution derived from mixture of quadratic hazard rate (QHR), geometric and transmuted distributions via the application of transmuted geometric-G (TG-G) family of Afify et al.(Pak J Statist 32(2), 139-160, 2016). Some of its structural properties are studied. Moments, incomplete moments, inequality measures, residual life functions and some other properties are theoretically taken up. The TG-QHR distribution is characterized via different techniques. Estimates of the parameters for TG-QHR distribution are obtained using maximum likelihood method. The simulation studies are performed on the basis of graphical results to illustrate the performance of maximum likelihood estimates (MLEs) of the TG-QHR distribution. The significance and flexibility of TG-QHR distribution is tested through different measures by application to two real data sets.

Suggested Citation

  • Fiaz Ahmad Bhatti & G. G. Hamedani & Mustafa Ç. Korkmaz & Munir Ahmad, 2018. "The transmuted geometric-quadratic hazard rate distribution: development, properties, characterizations and applications," Journal of Statistical Distributions and Applications, Springer, vol. 5(1), pages 1-23, December.
  • Handle: RePEc:spr:jstada:v:5:y:2018:i:1:d:10.1186_s40488-018-0085-8
    DOI: 10.1186/s40488-018-0085-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40488-018-0085-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40488-018-0085-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexander, Carol & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Sarabia, José María, 2012. "Generalized beta-generated distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1880-1897.
    2. Muhammad Shuaib Khan & Robert King & Irene Lena Hudson, 2017. "Transmuted Weibull distribution: Properties and estimation," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(11), pages 5394-5418, June.
    3. Richard L. Smith & J. C. Naylor, 1987. "A Comparison of Maximum Likelihood and Bayesian Estimators for the Three‐Parameter Weibull Distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 358-369, November.
    4. M. Jones, 2004. "Families of distributions arising from distributions of order statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(1), pages 1-43, June.
    5. Ayman Alzaatreh & Carl Lee & Felix Famoye, 2013. "A new method for generating families of continuous distributions," METRON, Springer;Sapienza Università di Roma, vol. 71(1), pages 63-79, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boikanyo Makubate & Fastel Chipepa & Broderick Oluyede & Peter O. Peter, 2021. "The Marshall-Olkin Half Logistic-G Family of Distributions With Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(2), pages 120-120, March.
    2. A. A. Ogunde & S. T. Fayose & B. Ajayi & D. O. Omosigho, 2020. "Properties, Inference and Applications of Alpha Power Extended Inverted Weibull Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(6), pages 1-90, November.
    3. Jiong Liu & R. A. Serota, 2023. "Rethinking Generalized Beta family of distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(2), pages 1-14, February.
    4. Amal S. Hassan & Said G. Nassr, 2019. "Power Lindley-G Family of Distributions," Annals of Data Science, Springer, vol. 6(2), pages 189-210, June.
    5. Mehrzad Ghorbani & Seyed Fazel Bagheri & Mojtaba Alizadeh, 2017. "A New Family of Distributions: The Additive Modified Weibull Odd Log-logistic-G Poisson Family, Properties and Applications," Annals of Data Science, Springer, vol. 4(2), pages 249-287, June.
    6. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    7. Sanku Dey & Vikas Kumar Sharma & Mhamed Mesfioui, 2017. "A New Extension of Weibull Distribution with Application to Lifetime Data," Annals of Data Science, Springer, vol. 4(1), pages 31-61, March.
    8. Francesca Condino & Filippo Domma, 2017. "A new distribution function with bounded support: the reflected generalized Topp-Leone power series distribution," METRON, Springer;Sapienza Università di Roma, vol. 75(1), pages 51-68, April.
    9. Muhammad H. Tahir & Muhammad Adnan Hussain & Gauss M. Cordeiro & M. El-Morshedy & M. S. Eliwa, 2020. "A New Kumaraswamy Generalized Family of Distributions with Properties, Applications, and Bivariate Extension," Mathematics, MDPI, vol. 8(11), pages 1-28, November.
    10. Alzaatreh, Ayman & Famoye, Felix & Lee, Carl, 2014. "The gamma-normal distribution: Properties and applications," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 67-80.
    11. Jiong Liu & R. A. Serota, 2022. "Rethinking Generalized Beta Family of Distributions," Papers 2209.05225, arXiv.org.
    12. Carol Alexander & Jose Maria Sarabia, 2010. "Endogenizing Model Risk to Quantile Estimates," ICMA Centre Discussion Papers in Finance icma-dp2010-07, Henley Business School, University of Reading.
    13. Showkat Ahmad Lone & Tabassum Naz Sindhu & Marwa K. H. Hassan & Tahani A. Abushal & Sadia Anwar & Anum Shafiq, 2023. "Theoretical Structure and Applications of a Newly Enhanced Gumbel Type II Model," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    14. Sandeep Kumar Maurya & Saralees Nadarajah, 2021. "Poisson Generated Family of Distributions: A Review," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 484-540, November.
    15. Zubair Ahmad, 2019. "The Hyperbolic Sine Rayleigh Distribution with Application to Bladder Cancer Susceptibility," Annals of Data Science, Springer, vol. 6(2), pages 211-222, June.
    16. José María Sarabia & Faustino Prieto & Vanesa Jordá & Stefan Sperlich, 2020. "A Note on Combining Machine Learning with Statistical Modeling for Financial Data Analysis," Risks, MDPI, vol. 8(2), pages 1-14, April.
    17. Abdisalam Hassan Muse & Samuel M. Mwalili & Oscar Ngesa, 2021. "On the Log-Logistic Distribution and Its Generalizations: A Survey," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(3), pages 1-93, June.
    18. Sajid Hussain & Muhammad Sajid Rashid & Mahmood Ul Hassan & Rashid Ahmed, 2022. "The Generalized Alpha Exponent Power Family of Distributions: Properties and Applications," Mathematics, MDPI, vol. 10(9), pages 1-19, April.
    19. Ferreira, Jose T.A.S. & Steel, Mark F.J., 2006. "A Constructive Representation of Univariate Skewed Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 823-829, June.
    20. Emrah Altun & Mustafa Ç. Korkmaz & Mahmoud El-Morshedy & Mohamed S. Eliwa, 2021. "A New Flexible Family of Continuous Distributions: The Additive Odd-G Family," Mathematics, MDPI, vol. 9(16), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jstada:v:5:y:2018:i:1:d:10.1186_s40488-018-0085-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.