Modified Beta Inverse Flexible Weibull Extension Distribution
Author
Abstract
Suggested Citation
DOI: 10.1007/s40745-021-00330-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bebbington, Mark & Lai, Chin-Diew & Zitikis, RiÄ ardas, 2007. "A flexible Weibull extension," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 719-726.
- Ahmad, Abd EL-Baset A. & Ghazal, M.G.M., 2020. "Exponentiated additive Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
- Sarhan, Ammar M. & Apaloo, Joseph, 2013. "Exponentiated modified Weibull extension distribution," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 137-144.
- Md. Mahabubur Rahman & Bander Al-Zahrani & Muhammad Qaiser Shahbaz, 2019. "Cubic Transmuted Weibull Distribution: Properties and Applications," Annals of Data Science, Springer, vol. 6(1), pages 83-102, March.
- Ehab Mohamed Almetwally & Hiba Zeyada Muhammed & El-Sayed A. El-Sherpieny, 2020. "Bivariate Weibull Distribution: Properties and Different Methods of Estimation," Annals of Data Science, Springer, vol. 7(1), pages 163-193, March.
- Ahmed Z. Afify & Gauss M. Cordeiro & Edwin M. M. Ortega & Haitham M. Yousof & Nadeem Shafique Butt, 2018. "The four-parameter Burr XII distribution: Properties, regression model, and applications," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(11), pages 2605-2624, June.
- Abdus Saboor & Muhammad Nauman Khan & Gauss M. Cordeiro & Marcelino A. R. Pascoa & Juliano Bortolini & Shahid Mubeen, 2019. "Modified beta modified-Weibull distribution," Computational Statistics, Springer, vol. 34(1), pages 173-199, March.
- Singla, Neetu & Jain, Kanchan & Kumar Sharma, Suresh, 2012. "The Beta Generalized Weibull distribution: Properties and applications," Reliability Engineering and System Safety, Elsevier, vol. 102(C), pages 5-15.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Abba, Badamasi & Wang, Hong & Bakouch, Hassan S., 2022. "A reliability and survival model for one and two failure modes system with applications to complete and censored datasets," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
- Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
- Ahmad, Abd EL-Baset A. & Ghazal, M.G.M., 2020. "Exponentiated additive Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
- Sanku Dey & Vikas Kumar Sharma & Mhamed Mesfioui, 2017. "A New Extension of Weibull Distribution with Application to Lifetime Data," Annals of Data Science, Springer, vol. 4(1), pages 31-61, March.
- He, Bo & Cui, Weimin & Du, Xiaofeng, 2016. "An additive modified Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 28-37.
- Rasool Roozegar & Saralees Nadarajah & Eisa Mahmoudi, 2022. "The Power Series Exponential Power Series Distributions with Applications to Failure Data Sets," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 44-78, May.
- C. Satheesh Kumar & S. Dharmaja, 2014. "On some properties of Kies distribution," METRON, Springer;Sapienza Università di Roma, vol. 72(1), pages 97-122, April.
- Almalki, Saad J. & Yuan, Jingsong, 2013. "A new modified Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 164-170.
- Peña-RamÃrez, Fernando A. & Guerra, Renata Rojas & Canterle, Diego Ramos & Cordeiro, Gauss M., 2020. "The logistic Nadarajah–Haghighi distribution and its associated regression model for reliability applications," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
- Peng, Xiuyun & Yan, Zaizai, 2014. "Estimation and application for a new extended Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 34-42.
- Broderick Oluyede & Thatayaone Moakofi, 2023. "The Gamma-Topp-Leone-Type II-Exponentiated Half Logistic-G Family of Distributions with Applications," Stats, MDPI, vol. 6(2), pages 1-28, June.
- Braglia, Marcello & Carmignani, Gionata & Frosolini, Marco & Zammori, Francesco, 2012. "Data classification and MTBF prediction with a multivariate analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 97(1), pages 27-35.
- Gauss M. Cordeiro & Giovana O. Silva & Edwin M. M. Ortega, 2016. "An extended-G geometric family," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-16, December.
- Bebbington, Mark & Lai, Chin-Diew & Zitikis, RiÄ ardas, 2009. "Balancing burn-in and mission times in environments with catastrophic and repairable failures," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1314-1321.
- Hassan M. Okasha & Abdulkareem M. Basheer & A. H. El-Baz, 2021. "Marshall–Olkin Extended Inverse Weibull Distribution: Different Methods of Estimations," Annals of Data Science, Springer, vol. 8(4), pages 769-784, December.
- Przemysław Bodziony & Michał Patyk, 2024. "The Influence of the Mining Operation Environment on the Energy Consumption and Technical Availability of Truck Haulage Operations in Surface Mines," Energies, MDPI, vol. 17(11), pages 1-18, May.
- Ehab M. Almetwally, 2022. "The Odd Weibull Inverse Topp–Leone Distribution with Applications to COVID-19 Data," Annals of Data Science, Springer, vol. 9(1), pages 121-140, February.
- Hassan S. Bakouch & Abdus Saboor & Muhammad Nauman Khan, 2021. "Modified Beta Linear Exponential Distribution with Hydrologic Applications," Annals of Data Science, Springer, vol. 8(1), pages 131-157, March.
- MARK BEBBINGTON & CHIN-DIEW LAI & RIcARDAS ZITIKIS, 2011. "Modelling Deceleration in Senescent Mortality," Mathematical Population Studies, Taylor & Francis Journals, vol. 18(1), pages 18-37.
- Zhang, Tieling & Dwight, Richard, 2013. "Choosing an optimal model for failure data analysis by graphical approach," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 111-123.
More about this item
Keywords
Flexible Weibull distribution; Modified beta distributions; Hazard rate function; Quantile function; Maximum likelihood estimation; Failure time;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:10:y:2023:i:3:d:10.1007_s40745-021-00330-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.