IDEAS home Printed from https://ideas.repec.org/a/spr/jstada/v5y2018i1d10.1186_s40488-018-0087-6.html
   My bibliography  Save this article

A new Weibull-X family of distributions: properties, characterizations and applications

Author

Listed:
  • Zubair Ahmad

    (Quaid-i-Azam University 45320)

  • M. Elgarhy

    (University of Jeddah)

  • G. G. Hamedani

    (Marquette University)

Abstract

We propose a new family of univariate distributions generated from the Weibull random variable, called a new Weibull-X family of distributions. Two special sub-models of the proposed family are presented and the shapes of density and hazard functions are investigated. General expressions for some statistical properties are discussed. For the new family, three useful characterizations based on truncated moments are presented. Three different methods to estimate the model parameters are discussed. Monti Carlo simulation study is conducted to evaluate the performances of these estimators. Finally, the importance of the new family is illustrated empirically via two real life applications.

Suggested Citation

  • Zubair Ahmad & M. Elgarhy & G. G. Hamedani, 2018. "A new Weibull-X family of distributions: properties, characterizations and applications," Journal of Statistical Distributions and Applications, Springer, vol. 5(1), pages 1-18, December.
  • Handle: RePEc:spr:jstada:v:5:y:2018:i:1:d:10.1186_s40488-018-0087-6
    DOI: 10.1186/s40488-018-0087-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40488-018-0087-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40488-018-0087-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sanku Dey & Vikas Kumar Sharma & Mhamed Mesfioui, 2017. "A New Extension of Weibull Distribution with Application to Lifetime Data," Annals of Data Science, Springer, vol. 4(1), pages 31-61, March.
    2. Alzaatreh, Ayman & Famoye, Felix & Lee, Carl, 2014. "The gamma-normal distribution: Properties and applications," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 67-80.
    3. M. Jones, 2004. "Families of distributions arising from distributions of order statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(1), pages 1-43, June.
    4. Ayman Alzaatreh & Carl Lee & Felix Famoye, 2013. "A new method for generating families of continuous distributions," METRON, Springer;Sapienza Università di Roma, vol. 71(1), pages 63-79, June.
    5. Zohdy M. Nofal & Ahmed Z. Afify & Haitham M. Yousof & Gauss M. Cordeiro, 2017. "The generalized transmuted-G family of distributions," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(8), pages 4119-4136, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad H. Tahir & Muhammad Adnan Hussain & Gauss M. Cordeiro & M. El-Morshedy & M. S. Eliwa, 2020. "A New Kumaraswamy Generalized Family of Distributions with Properties, Applications, and Bivariate Extension," Mathematics, MDPI, vol. 8(11), pages 1-28, November.
    2. Joseph Thomas Eghwerido & Pelumi E. Oguntunde & Friday Ikechukwu Agu, 2023. "The Alpha Power Marshall-Olkin-G Distribution: Properties, and Applications," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 172-197, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boikanyo Makubate & Fastel Chipepa & Broderick Oluyede & Peter O. Peter, 2021. "The Marshall-Olkin Half Logistic-G Family of Distributions With Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(2), pages 120-120, March.
    2. A. A. Ogunde & S. T. Fayose & B. Ajayi & D. O. Omosigho, 2020. "Properties, Inference and Applications of Alpha Power Extended Inverted Weibull Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(6), pages 1-90, November.
    3. Jiong Liu & R. A. Serota, 2023. "Rethinking Generalized Beta family of distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(2), pages 1-14, February.
    4. Amal S. Hassan & Said G. Nassr, 2019. "Power Lindley-G Family of Distributions," Annals of Data Science, Springer, vol. 6(2), pages 189-210, June.
    5. Ahmad Alzaghal & Duha Hamed, 2019. "New Families of Generalized Lomax Distributions: Properties and Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 8(6), pages 1-51, November.
    6. Fiaz Ahmad Bhatti & G. G. Hamedani & Mustafa Ç. Korkmaz & Munir Ahmad, 2018. "The transmuted geometric-quadratic hazard rate distribution: development, properties, characterizations and applications," Journal of Statistical Distributions and Applications, Springer, vol. 5(1), pages 1-23, December.
    7. Mehrzad Ghorbani & Seyed Fazel Bagheri & Mojtaba Alizadeh, 2017. "A New Family of Distributions: The Additive Modified Weibull Odd Log-logistic-G Poisson Family, Properties and Applications," Annals of Data Science, Springer, vol. 4(2), pages 249-287, June.
    8. Sandeep Kumar Maurya & Saralees Nadarajah, 2021. "Poisson Generated Family of Distributions: A Review," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 484-540, November.
    9. Zubair Ahmad, 2019. "The Hyperbolic Sine Rayleigh Distribution with Application to Bladder Cancer Susceptibility," Annals of Data Science, Springer, vol. 6(2), pages 211-222, June.
    10. Abdisalam Hassan Muse & Samuel M. Mwalili & Oscar Ngesa, 2021. "On the Log-Logistic Distribution and Its Generalizations: A Survey," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(3), pages 1-93, June.
    11. Ahmed Z. Afify & Ahmed M. Gemeay & Noor Akma Ibrahim, 2020. "The Heavy-Tailed Exponential Distribution: Risk Measures, Estimation, and Application to Actuarial Data," Mathematics, MDPI, vol. 8(8), pages 1-28, August.
    12. Shahdie Marganpoor & Vahid Ranjbar & Morad Alizadeh & Kamel Abdollahnezhad, 2020. "Generalised Odd Frechet Family of Distributions: Properties and Applications," Statistics in Transition New Series, Polish Statistical Association, vol. 21(3), pages 109-128, September.
    13. Ahmed M. T. Abd El-Bar & Willams B. F. da Silva & Abraão D. C. Nascimento, 2021. "An Extended log-Lindley-G Family: Properties and Experiments in Repairable Data," Mathematics, MDPI, vol. 9(23), pages 1-15, December.
    14. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    15. Muhammad Ijaz & Syed Muhammad Asim & Alamgir & Muhammad Farooq & Sajjad Ahmad Khan & Sadaf Manzoor, 2020. "A Gull Alpha Power Weibull distribution with applications to real and simulated data," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-19, June.
    16. M. Nassar & A. Alzaatreh & O. Abo-Kasem & M. Mead & M. Mansoor, 2018. "A New Family of Generalized Distributions Based on Alpha Power Transformation with Application to Cancer Data," Annals of Data Science, Springer, vol. 5(3), pages 421-436, September.
    17. Francesca Condino & Filippo Domma, 2023. "Unit Distributions: A General Framework, Some Special Cases, and the Regression Unit-Dagum Models," Mathematics, MDPI, vol. 11(13), pages 1-25, June.
    18. Francesca Condino & Filippo Domma, 2017. "A new distribution function with bounded support: the reflected generalized Topp-Leone power series distribution," METRON, Springer;Sapienza Università di Roma, vol. 75(1), pages 51-68, April.
    19. Morad Alizadeh & Ahmed Z. Afify & M. S. Eliwa & Sajid Ali, 2020. "The odd log-logistic Lindley-G family of distributions: properties, Bayesian and non-Bayesian estimation with applications," Computational Statistics, Springer, vol. 35(1), pages 281-308, March.
    20. Shumaila Ihtisham & Alamgir Khalil & Sadaf Manzoor & Sajjad Ahmad Khan & Amjad Ali, 2019. "Alpha-Power Pareto distribution: Its properties and applications," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jstada:v:5:y:2018:i:1:d:10.1186_s40488-018-0087-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.