IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v11y2024i5d10.1007_s40745-022-00436-2.html
   My bibliography  Save this article

High Resolution Solar Image Generation Using Generative Adversarial Networks

Author

Listed:
  • Ankan Dash

    (New Jersey Institute of Technology)

  • Junyi Ye

    (New Jersey Institute of Technology)

  • Guiling Wang

    (New Jersey Institute of Technology)

  • Huiran Jin

    (New Jersey Institute of Technology)

Abstract

We applied Deep Learning algorithm known as Generative Adversarial Networks (GANs) to perform solar image-to-image translation. That is, from Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI) line of sight magnetogram images to SDO/Atmospheric Imaging Assembly (AIA) 0304-Å images. The Ultraviolet (UV)/Extreme Ultraviolet observations like the SDO/AIA 0304-Å images were only made available to scientists in the late 1990s even though the magnetic field observations like the SDO/HMI have been available since the 1970s. Therefore, by leveraging Deep Learning algorithms like GANs we can give scientists access to complete datasets for analysis. For generating high resolution solar images, we use the Pix2PixHD and Pix2Pix algorithms. The Pix2PixHD algorithm was specifically designed for high resolution image generation tasks, and the Pix2Pix algorithm is by far the most widely used image to image translation algorithm. For training and testing we used the data for the year 2012, 2013 and 2014. After model training, we evaluated the model on the test data. The results show that our deep learning models are capable of generating high resolution (1024 × 1024 pixels) SDO/AIA0304 images from SDO/HMI line of sight magnetograms. Specifically, the pixel-to-pixel Pearson Correlation Coefficient of the images generated by Pix2PixHD and original images is as high as 0.99. The number is 0.962 if Pix2Pix is used to generate images. The results we get for our Pix2PixHD model is better than the results obtained by previous works done by others to generate SDO/AIA 0304 images. Thus, we can use these models to generate AIA0304 images when the AIA0304 data is not available which can be used for understanding space weather and giving researchers the capability to predict solar events such as Solar Flares and Coronal Mass Ejections. As far as we know, our work is the first attempt to leverage Pix2PixHD algorithm for SDO/HMI to SDO/AIA0304 image-to-image translation.

Suggested Citation

  • Ankan Dash & Junyi Ye & Guiling Wang & Huiran Jin, 2024. "High Resolution Solar Image Generation Using Generative Adversarial Networks," Annals of Data Science, Springer, vol. 11(5), pages 1545-1561, October.
  • Handle: RePEc:spr:aodasc:v:11:y:2024:i:5:d:10.1007_s40745-022-00436-2
    DOI: 10.1007/s40745-022-00436-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-022-00436-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-022-00436-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    2. Suellen Teixeira Zavadzki de Pauli & Mariana Kleina & Wagner Hugo Bonat, 2020. "Comparing Artificial Neural Network Architectures for Brazilian Stock Market Prediction," Annals of Data Science, Springer, vol. 7(4), pages 613-628, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aidin Zehtab-Salmasi & Ali-Reza Feizi-Derakhshi & Narjes Nikzad-Khasmakhi & Meysam Asgari-Chenaghlu & Saeideh Nabipour, 2023. "Multimodal Price Prediction," Annals of Data Science, Springer, vol. 10(3), pages 619-635, June.
    2. Terence D. Agbeyegbe, 2023. "The Link Between Output Growth and Output Growth Volatility: Barbados," Annals of Data Science, Springer, vol. 10(3), pages 787-804, June.
    3. Deeksha Chandola & Akshit Mehta & Shikha Singh & Vinay Anand Tikkiwal & Himanshu Agrawal, 2023. "Forecasting Directional Movement of Stock Prices using Deep Learning," Annals of Data Science, Springer, vol. 10(5), pages 1361-1378, October.
    4. Huanyu Ma & Yan Xu & Yulong Liu, 2022. "Prediction of Listed Company Growth in Non-public Economy," Annals of Data Science, Springer, vol. 9(4), pages 847-861, August.
    5. Akshit Kurani & Pavan Doshi & Aarya Vakharia & Manan Shah, 2023. "A Comprehensive Comparative Study of Artificial Neural Network (ANN) and Support Vector Machines (SVM) on Stock Forecasting," Annals of Data Science, Springer, vol. 10(1), pages 183-208, February.
    6. Manoj Verma & Harish Kumar Ghritlahre, 2023. "Forecasting of Wind Speed by Using Three Different Techniques of Prediction Models," Annals of Data Science, Springer, vol. 10(3), pages 679-711, June.
    7. Durgesh Samariya & Amit Thakkar, 2023. "A Comprehensive Survey of Anomaly Detection Algorithms," Annals of Data Science, Springer, vol. 10(3), pages 829-850, June.
    8. Heba Soltan Mohamed & M. Masoom Ali & Haitham M. Yousof, 2023. "The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance," Annals of Data Science, Springer, vol. 10(5), pages 1199-1216, October.
    9. Patrick Osatohanmwen & Eferhonore Efe-Eyefia & Francis O. Oyegue & Joseph E. Osemwenkhae & Sunday M. Ogbonmwan & Benson A. Afere, 2022. "The Exponentiated Gumbel–Weibull {Logistic} Distribution with Application to Nigeria’s COVID-19 Infections Data," Annals of Data Science, Springer, vol. 9(5), pages 909-943, October.
    10. Petar Radanliev & David Roure & Rob Walton & Max Kleek & Omar Santos & La’Treall Maddox, 2022. "What Country, University, or Research Institute, Performed the Best on Covid-19 During the First Wave of the Pandemic?," Annals of Data Science, Springer, vol. 9(5), pages 1049-1067, October.
    11. Roberto Moro-Visconti & Salvador Cruz Rambaud & Joaquín López Pascual, 2023. "Artificial intelligence-driven scalability and its impact on the sustainability and valuation of traditional firms," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    12. Anjan Mukherjee & Abhik Mukherjee, 2022. "Interval-Valued Intuitionistic Fuzzy Soft Rough Approximation Operators and Their Applications in Decision Making Problem," Annals of Data Science, Springer, vol. 9(3), pages 611-625, June.
    13. Mansoureh Beheshti Nejad & Seyed Mahmoud Zanjirchi & Seyed Mojtaba Hosseini Bamakan & Negar Jalilian, 2024. "Blockchain Adoption in Operations Management: A Systematic Literature Review of 14 Years of Research," Annals of Data Science, Springer, vol. 11(4), pages 1361-1389, August.
    14. M. Sridharan, 2023. "Generalized Regression Neural Network Model Based Estimation of Global Solar Energy Using Meteorological Parameters," Annals of Data Science, Springer, vol. 10(4), pages 1107-1125, August.
    15. Guangrui Tang & Neng Fan, 2022. "A Survey of Solution Path Algorithms for Regression and Classification Models," Annals of Data Science, Springer, vol. 9(4), pages 749-789, August.
    16. Amaal Elsayed Mubarak & Ehab Mohamed Almetwally, 2024. "Modelling and Forecasting of Covid-19 Using Periodical ARIMA Models," Annals of Data Science, Springer, vol. 11(4), pages 1483-1502, August.
    17. Xueyan Xu & Fusheng Yu & Runjun Wan, 2023. "A Determining Degree-Based Method for Classification Problems with Interval-Valued Attributes," Annals of Data Science, Springer, vol. 10(2), pages 393-413, April.
    18. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    19. Ciniro A. L. Nametala & Jonas Villela de Souza & Alexandre Pimenta & Eduardo Gontijo Carrano, 2023. "Use of Econometric Predictors and Artificial Neural Networks for the Construction of Stock Market Investment Bots," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 743-773, February.
    20. Prashant Singh & Prashant Verma & Nikhil Singh, 2022. "Offline Signature Verification: An Application of GLCM Features in Machine Learning," Annals of Data Science, Springer, vol. 9(6), pages 1309-1321, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:11:y:2024:i:5:d:10.1007_s40745-022-00436-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.