Multimodal Price Prediction
Author
Abstract
Suggested Citation
DOI: 10.1007/s40745-021-00326-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Amin Azari, 2019. "Bitcoin Price Prediction: An ARIMA Approach," Papers 1904.05315, arXiv.org.
- Indranil SenGupta & William Nganje & Erik Hanson, 2021.
"Refinements of Barndorff-Nielsen and Shephard Model: An Analysis of Crude Oil Price with Machine Learning,"
Annals of Data Science, Springer, vol. 8(1), pages 39-55, March.
- Indranil SenGupta & William Nganje & Erik Hanson, 2019. "Refinements of Barndorff-Nielsen and Shephard model: an analysis of crude oil price with machine learning," Papers 1911.13300, arXiv.org, revised Mar 2020.
- Md. Karimuzzaman & Nusrat Islam & Sabrina Afroz & Md. Moyazzem Hossain, 2021. "Predicting Stock Market Price of Bangladesh: A Comparative Study of Linear Classification Models," Annals of Data Science, Springer, vol. 8(1), pages 21-38, March.
- Suhwan Ji & Jongmin Kim & Hyeonseung Im, 2019. "A Comparative Study of Bitcoin Price Prediction Using Deep Learning," Mathematics, MDPI, vol. 7(10), pages 1-20, September.
- Lahmiri, Salim & Bekiros, Stelios, 2019. "Cryptocurrency forecasting with deep learning chaotic neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 35-40.
- James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
- Suellen Teixeira Zavadzki de Pauli & Mariana Kleina & Wagner Hugo Bonat, 2020. "Comparing Artificial Neural Network Architectures for Brazilian Stock Market Prediction," Annals of Data Science, Springer, vol. 7(4), pages 613-628, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Huanyu Ma & Yan Xu & Yulong Liu, 2022. "Prediction of Listed Company Growth in Non-public Economy," Annals of Data Science, Springer, vol. 9(4), pages 847-861, August.
- Akshit Kurani & Pavan Doshi & Aarya Vakharia & Manan Shah, 2023. "A Comprehensive Comparative Study of Artificial Neural Network (ANN) and Support Vector Machines (SVM) on Stock Forecasting," Annals of Data Science, Springer, vol. 10(1), pages 183-208, February.
- Nagula, Pavan Kumar & Alexakis, Christos, 2022. "A new hybrid machine learning model for predicting the bitcoin (BTC-USD) price," Journal of Behavioral and Experimental Finance, Elsevier, vol. 36(C).
- Manoj Verma & Harish Kumar Ghritlahre, 2023. "Forecasting of Wind Speed by Using Three Different Techniques of Prediction Models," Annals of Data Science, Springer, vol. 10(3), pages 679-711, June.
- Manoj Verma & Harish Kumar Ghritlahre & Ghrithanchi Chandrakar, 2023. "Wind Speed Prediction of Central Region of Chhattisgarh (India) Using Artificial Neural Network and Multiple Linear Regression Technique: A Comparative Study," Annals of Data Science, Springer, vol. 10(4), pages 851-873, August.
- Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
- Terence D. Agbeyegbe, 2023. "The Link Between Output Growth and Output Growth Volatility: Barbados," Annals of Data Science, Springer, vol. 10(3), pages 787-804, June.
- Rico-Peña, Juan Jesús & Arguedas-Sanz, Raquel & López-Martin, Carmen, 2023. "Models used to characterise blockchain features. A systematic literature review and bibliometric analysis," Technovation, Elsevier, vol. 123(C).
- Deeksha Chandola & Akshit Mehta & Shikha Singh & Vinay Anand Tikkiwal & Himanshu Agrawal, 2023. "Forecasting Directional Movement of Stock Prices using Deep Learning," Annals of Data Science, Springer, vol. 10(5), pages 1361-1378, October.
- Elton G. Aráujo & Julio C. S. Vasconcelos & Denize P. Santos & Edwin M. M. Ortega & Dalton Souza & João P. F. Zanetoni, 2023. "The Zero-Inflated Negative Binomial Semiparametric Regression Model: Application to Number of Failing Grades Data," Annals of Data Science, Springer, vol. 10(4), pages 991-1006, August.
- Isabela Ruiz Roque da Silva & Eli Hadad Junior & Pedro Paulo Balbi, 2022. "Cryptocurrencies trading algorithms: A review," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1661-1668, December.
- Ankan Dash & Junyi Ye & Guiling Wang & Huiran Jin, 2024. "High Resolution Solar Image Generation Using Generative Adversarial Networks," Annals of Data Science, Springer, vol. 11(5), pages 1545-1561, October.
- Shao, Zhen & Zheng, Qingru & Yang, Shanlin & Gao, Fei & Cheng, Manli & Zhang, Qiang & Liu, Chen, 2020. "Modeling and forecasting the electricity clearing price: A novel BELM based pattern classification framework and a comparative analytic study on multi-layer BELM and LSTM," Energy Economics, Elsevier, vol. 86(C).
- Bildirici, Melike E. & Sonustun, Bahri, 2021. "Chaotic behavior in gold, silver, copper and bitcoin prices," Resources Policy, Elsevier, vol. 74(C).
- Heba Soltan Mohamed & M. Masoom Ali & Haitham M. Yousof, 2023. "The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance," Annals of Data Science, Springer, vol. 10(5), pages 1199-1216, October.
- Roberto Moro-Visconti & Salvador Cruz Rambaud & Joaquín López Pascual, 2023. "Artificial intelligence-driven scalability and its impact on the sustainability and valuation of traditional firms," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
- Mansoureh Beheshti Nejad & Seyed Mahmoud Zanjirchi & Seyed Mojtaba Hosseini Bamakan & Negar Jalilian, 2024. "Blockchain Adoption in Operations Management: A Systematic Literature Review of 14 Years of Research," Annals of Data Science, Springer, vol. 11(4), pages 1361-1389, August.
- Méndez-Gordillo, Alma Rosa & Cadenas, Erasmo, 2021. "Wind speed forecasting by the extraction of the multifractal patterns of time series through the multiplicative cascade technique," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
- M. Sridharan, 2023. "Generalized Regression Neural Network Model Based Estimation of Global Solar Energy Using Meteorological Parameters," Annals of Data Science, Springer, vol. 10(4), pages 1107-1125, August.
- Bartosz Bieganowski & Robert 'Slepaczuk, 2024. "Supervised Autoencoders with Fractionally Differentiated Features and Triple Barrier Labelling Enhance Predictions on Noisy Data," Papers 2411.12753, arXiv.org, revised Nov 2024.
More about this item
Keywords
Price prediction; Multimodal learning; Convolutional neural network; Inception; Classification;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:10:y:2023:i:3:d:10.1007_s40745-021-00326-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.