IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v10y2023i3d10.1007_s40745-021-00341-0.html
   My bibliography  Save this article

Student-Performulator: Predicting Students’ Academic Performance at Secondary and Intermediate Level Using Machine Learning

Author

Listed:
  • Shah Hussain

    (Iqra National University)

  • Muhammad Qasim Khan

    (Iqra National University)

Abstract

Forecasting academic performance of student has been a substantial research inquest in the Educational Data-Mining that utilizes Machine-learning (ML) procedures to probe the data of educational setups. Quantifying student academic performance is challenging because academic performance of students hinges on several factors. The in hand research work focuses on students’ grade and marks prediction utilizing supervised ML approaches. The data-set utilized in this research work has been obtained from the Board of Intermediate & Secondary Education (B.I.S.E) Peshawar, Khyber Pakhtunkhwa. There are 7 areas in BISEP i.e., Peshawar, FR-Peshawar, Charsadda, Khyber, Mohmand and Upper and Lower Chitral. This paper aims to examine the quality of education that is closely related to the aims of sustainability. The system has created an abundance of data which needs to be properly analyzed so that most useful information should be obtained for planning and future development. Grade and marks forecasting of students with their historical educational record is a renowned and valuable application in the EDM. It becomes an incredible information source that could be utilized in various ways to enhance the standard of education nationwide. Relevant research study reveals that numerous methods for academic performance forecasting are built to carryout improvements in administrative and teaching staff of academic organizations. In the put forwarded approach, the acquired data-set is pre-processed to purify the data quality, the labeled academic historical data of student (30 optimum attributes) is utilized to train regression model and DT-classifier. The regression will forecast marks, while grade will be forecasted by classification system, eventually analyzed the results obtained by the models. The results obtained show that machine learning technology is efficient and relevant for predicting students performance.

Suggested Citation

  • Shah Hussain & Muhammad Qasim Khan, 2023. "Student-Performulator: Predicting Students’ Academic Performance at Secondary and Intermediate Level Using Machine Learning," Annals of Data Science, Springer, vol. 10(3), pages 637-655, June.
  • Handle: RePEc:spr:aodasc:v:10:y:2023:i:3:d:10.1007_s40745-021-00341-0
    DOI: 10.1007/s40745-021-00341-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-021-00341-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-021-00341-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diego Buenaño-Fernández & David Gil & Sergio Luján-Mora, 2019. "Application of Machine Learning in Predicting Performance for Computer Engineering Students: A Case Study," Sustainability, MDPI, vol. 11(10), pages 1-18, May.
    2. Fadi Thabtah & Li Zhang & Neda Abdelhamid, 2019. "NBA Game Result Prediction Using Feature Analysis and Machine Learning," Annals of Data Science, Springer, vol. 6(1), pages 103-116, March.
    3. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manoj Verma & Harish Kumar Ghritlahre, 2023. "Forecasting of Wind Speed by Using Three Different Techniques of Prediction Models," Annals of Data Science, Springer, vol. 10(3), pages 679-711, June.
    2. Heba Soltan Mohamed & M. Masoom Ali & Haitham M. Yousof, 2023. "The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance," Annals of Data Science, Springer, vol. 10(5), pages 1199-1216, October.
    3. Roberto Moro-Visconti & Salvador Cruz Rambaud & Joaquín López Pascual, 2023. "Artificial intelligence-driven scalability and its impact on the sustainability and valuation of traditional firms," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    4. Xueyan Xu & Fusheng Yu & Runjun Wan, 2023. "A Determining Degree-Based Method for Classification Problems with Interval-Valued Attributes," Annals of Data Science, Springer, vol. 10(2), pages 393-413, April.
    5. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    6. Prashant Singh & Prashant Verma & Nikhil Singh, 2022. "Offline Signature Verification: An Application of GLCM Features in Machine Learning," Annals of Data Science, Springer, vol. 9(6), pages 1309-1321, December.
    7. Hui Zheng & Peng LI & Jing HE, 2022. "A Novel Association Rule Mining Method for Streaming Temporal Data," Annals of Data Science, Springer, vol. 9(4), pages 863-883, August.
    8. Muhammed Navas Thorakkattle & Shazia Farhin & Athar Ali khan, 2022. "Forecasting the Trends of Covid-19 and Causal Impact of Vaccines Using Bayesian Structural time Series and ARIMA," Annals of Data Science, Springer, vol. 9(5), pages 1025-1047, October.
    9. Tousifur Rahman & Partha Jyoti Hazarika & M. Masoom Ali & Manash Pratim Barman, 2022. "Three-Inflated Poisson Distribution and its Application in Suicide Cases of India During Covid-19 Pandemic," Annals of Data Science, Springer, vol. 9(5), pages 1103-1127, October.
    10. Arto O. Salonen & Annukka Tapani & Sami Suhonen, 2021. "Student Online Activity in Blended Learning: A Learning Analytics Perspective of Professional Teacher Education Studies in Finland," SAGE Open, , vol. 11(4), pages 21582440211, October.
    11. Vrushabh Gada & Madhura Shegaonkar & Madhura Inamdar & Sharath Dinesh & Darshan Sapariya & Vedant Konde & Mahesh Warang & Ninad Mehendale, 2022. "Data Analysis of COVID-19 Hospital Records Using Contextual Patient Classification System," Annals of Data Science, Springer, vol. 9(5), pages 945-965, October.
    12. Showkat Ahmad Lone & Intekhab Alam & Ahmadur Rahman, 2023. "Statistical Analysis Under Geometric Process in Accelerated Life Testing Plans for Generalized Exponential Distribution," Annals of Data Science, Springer, vol. 10(6), pages 1653-1665, December.
    13. Yanke Bao & Ying Wang, 2022. "Factor Space: The New Science of Causal Relationship," Annals of Data Science, Springer, vol. 9(3), pages 555-570, June.
    14. Manoj Verma & Harish Kumar Ghritlahre & Surendra Bajpai, 2023. "A Case Study of Optimization of a Solar Power Plant Sizing and Placement in Madhya Pradesh, India Using Multi-Objective Genetic Algorithm," Annals of Data Science, Springer, vol. 10(4), pages 933-966, August.
    15. Fábio Prataviera & Aline Martineli Batista & Edwin M. M. Ortega & Gauss M. Cordeiro & Bruno Montoani Silva, 2023. "The Logit Exponentiated Power Exponential Regression with Applications," Annals of Data Science, Springer, vol. 10(3), pages 713-735, June.
    16. Anda Tang & Pei Quan & Lingfeng Niu & Yong Shi, 2022. "A Survey for Sparse Regularization Based Compression Methods," Annals of Data Science, Springer, vol. 9(4), pages 695-722, August.
    17. Devendra Kumar & M. Nassar & Sanku Dey, 2023. "Progressive Type-II Censored Data and Associated Inference with Application Based on Li–Li Rayleigh Distribution," Annals of Data Science, Springer, vol. 10(1), pages 43-71, February.
    18. Shan Chen & Yuanzhao Ding, 2023. "A Machine Learning Approach to Predicting Academic Performance in Pennsylvania’s Schools," Social Sciences, MDPI, vol. 12(3), pages 1-13, February.
    19. Intekhab Alam & Sadia Anwar & Lalit Kumar Sharma & Aquil Ahmed, 2023. "Competing Risk Analysis in Constant Stress Partially Accelerated Life Tests Under Censored Information," Annals of Data Science, Springer, vol. 10(5), pages 1379-1403, October.
    20. Ayesha Sohail, 2023. "Genetic Algorithms in the Fields of Artificial Intelligence and Data Sciences," Annals of Data Science, Springer, vol. 10(4), pages 1007-1018, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:10:y:2023:i:3:d:10.1007_s40745-021-00341-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.