IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v342y2024i3d10.1007_s10479-023-05180-1.html
   My bibliography  Save this article

Fuzzy clustering with entropy regularization for interval-valued data with an application to scientific journal citations

Author

Listed:
  • Pierpaolo D’Urso

    (Sapienza - University of Rome)

  • Livia Giovanni

    (Luiss University)

  • Leonardo Salvatore Alaimo

    (Sapienza - University of Rome)

  • Raffaele Mattera

    (Sapienza - University of Rome)

  • Vincenzina Vitale

    (Sapienza - University of Rome)

Abstract

In recent years, the research of statistical methods to analyze complex structures of data has increased. In particular, a lot of attention has been focused on the interval-valued data. In a classical cluster analysis framework, an interesting line of research has focused on the clustering of interval-valued data based on fuzzy approaches. Following the partitioning around medoids fuzzy approach research line, a new fuzzy clustering model for interval-valued data is suggested. In particular, we propose a new model based on the use of the entropy as a regularization function in the fuzzy clustering criterion. The model uses a robust weighted dissimilarity measure to smooth noisy data and weigh the center and radius components of the interval-valued data, respectively. To show the good performances of the proposed clustering model, we provide a simulation study and an application to the clustering of scientific journals in research evaluation.

Suggested Citation

  • Pierpaolo D’Urso & Livia Giovanni & Leonardo Salvatore Alaimo & Raffaele Mattera & Vincenzina Vitale, 2024. "Fuzzy clustering with entropy regularization for interval-valued data with an application to scientific journal citations," Annals of Operations Research, Springer, vol. 342(3), pages 1605-1628, November.
  • Handle: RePEc:spr:annopr:v:342:y:2024:i:3:d:10.1007_s10479-023-05180-1
    DOI: 10.1007/s10479-023-05180-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05180-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05180-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Renato Coppi & Paolo Giordani & Pierpaolo D’Urso, 2006. "Component Models for Fuzzy Data," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 733-761, December.
    2. Coppi, Renato & D'Urso, Pierpaolo, 2006. "Fuzzy unsupervised classification of multivariate time trajectories with the Shannon entropy regularization," Computational Statistics & Data Analysis, Elsevier, vol. 50(6), pages 1452-1477, March.
    3. D'Urso, Pierpaolo & Giordani, Paolo, 2006. "A weighted fuzzy c-means clustering model for fuzzy data," Computational Statistics & Data Analysis, Elsevier, vol. 50(6), pages 1496-1523, March.
    4. Pierpaolo D'Urso & Paolo Giordani, 2006. "A robust fuzzy k-means clustering model for interval valued data," Computational Statistics, Springer, vol. 21(2), pages 251-269, June.
    5. Giordani, Paolo & Kiers, Henk A. L., 2004. "Principal Component Analysis of symmetric fuzzy data," Computational Statistics & Data Analysis, Elsevier, vol. 45(3), pages 519-548, April.
    6. Antonio D’Ambrosio & Sonia Amodio & Carmela Iorio & Giuseppe Pandolfo & Roberta Siciliano, 2021. "Adjusted Concordance Index: an Extensionl of the Adjusted Rand Index to Fuzzy Partitions," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 112-128, April.
    7. Pierpaolo D’Urso & Riccardo Massari & Livia De Giovanni & Carmela Cappelli, 2017. "Exponential distance-based fuzzy clustering for interval-valued data," Fuzzy Optimization and Decision Making, Springer, vol. 16(1), pages 51-70, March.
    8. Elizabeth Ann Maharaj & Pierpaolo D’Urso & Don Galagedera, 2010. "Wavelet-based Fuzzy Clustering of Time Series," Journal of Classification, Springer;The Classification Society, vol. 27(2), pages 231-275, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierpaolo D’Urso & María Ángeles Gil, 2017. "Fuzzy data analysis and classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 645-657, December.
    2. Ferraro, Maria Brigida, 2024. "Fuzzy k-Means: history and applications," Econometrics and Statistics, Elsevier, vol. 30(C), pages 110-123.
    3. Pierpaolo D’Urso & Vincenzina Vitale, 2022. "A Kemeny Distance-Based Robust Fuzzy Clustering for Preference Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 600-647, November.
    4. Doring, Christian & Lesot, Marie-Jeanne & Kruse, Rudolf, 2006. "Data analysis with fuzzy clustering methods," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 192-214, November.
    5. Coppi, Renato & D’Urso, Pierpaolo & Giordani, Paolo, 2012. "Fuzzy and possibilistic clustering for fuzzy data," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 915-927.
    6. Colubi, Ana & Ramos-Guajardo, Ana Belén, 2023. "Fuzzy sets and (fuzzy) random sets in Econometrics and Statistics," Econometrics and Statistics, Elsevier, vol. 26(C), pages 84-98.
    7. Giordani, Paolo, 2010. "Three-way analysis of imprecise data," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 568-582, March.
    8. D'Urso, Pierpaolo & Giordani, Paolo, 2003. "A least squares approach to Principal Component Analysis for interval valued data," Economics & Statistics Discussion Papers esdp03013, University of Molise, Department of Economics.
    9. Roy Cerqueti & Antonio Iovanella & Raffaele Mattera, 2024. "Clustering networked funded European research activities through rank-size laws," Annals of Operations Research, Springer, vol. 342(3), pages 1707-1735, November.
    10. Moliner, Jesús & Epifanio, Irene, 2019. "Robust multivariate and functional archetypal analysis with application to financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 195-208.
    11. Zhang, Y.M. & Huang, G.H. & He, L. & Li, Y.P., 2008. "Quality evaluation for composting products through fuzzy latent component analysis," Resources, Conservation & Recycling, Elsevier, vol. 52(10), pages 1132-1140.
    12. Vaishali Mirge & Kesari Verma & Shubhrata Gupta, 2017. "Dense traffic flow patterns mining in bi-directional road networks using density based trajectory clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 547-561, September.
    13. D'Urso, Pierpaolo & Giordani, Paolo, 2003. "A possibilistic approach to latent structure analysis for symmetric fuzzy data," Economics & Statistics Discussion Papers esdp03014, University of Molise, Department of Economics.
    14. Carolina Euán & Hernando Ombao & Joaquín Ortega, 2018. "The Hierarchical Spectral Merger Algorithm: A New Time Series Clustering Procedure," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 71-99, April.
    15. Pierpaolo D’Urso & Livia De Giovanni & Riccardo Massari & Francesca G. M. Sica, 2019. "Cross Sectional and Longitudinal Fuzzy Clustering of the NUTS and Positioning of the Italian Regions with Respect to the Regional Competitiveness Index (RCI) Indicators with Contiguity Constraints," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(3), pages 609-650, December.
    16. Pierpaolo D’Urso & Riccardo Massari & Livia De Giovanni & Carmela Cappelli, 2017. "Exponential distance-based fuzzy clustering for interval-valued data," Fuzzy Optimization and Decision Making, Springer, vol. 16(1), pages 51-70, March.
    17. Renato Coppi & Pierpaolo D’Urso & Paolo Giordani, 2010. "A Fuzzy Clustering Model for Multivariate Spatial Time Series," Journal of Classification, Springer;The Classification Society, vol. 27(1), pages 54-88, March.
    18. Pierpaolo D'Urso & Marta Disegna & Riccardo Massari & Linda Osti, 2014. "Fuzzy segmentation in postmodern consumers," BEMPS - Bozen Economics & Management Paper Series BEMPS20, Faculty of Economics and Management at the Free University of Bozen.
    19. Coppi, Renato & Gil, Maria A. & Kiers, Henk A.L., 2006. "The fuzzy approach to statistical analysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 1-14, November.
    20. D'Urso, Pierpaolo & Santoro, Adriana, 2006. "Fuzzy clusterwise linear regression analysis with symmetrical fuzzy output variable," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 287-313, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:342:y:2024:i:3:d:10.1007_s10479-023-05180-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.