IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v50y2006i6p1496-1523.html
   My bibliography  Save this article

A weighted fuzzy c-means clustering model for fuzzy data

Author

Listed:
  • D'Urso, Pierpaolo
  • Giordani, Paolo

Abstract

No abstract is available for this item.

Suggested Citation

  • D'Urso, Pierpaolo & Giordani, Paolo, 2006. "A weighted fuzzy c-means clustering model for fuzzy data," Computational Statistics & Data Analysis, Elsevier, vol. 50(6), pages 1496-1523, March.
  • Handle: RePEc:eee:csdana:v:50:y:2006:i:6:p:1496-1523
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(04)00394-9
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giordani, Paolo & Kiers, Henk A. L., 2004. "Principal Component Analysis of symmetric fuzzy data," Computational Statistics & Data Analysis, Elsevier, vol. 45(3), pages 519-548, April.
    2. Coppi, Renato & D'Urso, Pierpaolo, 2003. "Three-way fuzzy clustering models for LR fuzzy time trajectories," Computational Statistics & Data Analysis, Elsevier, vol. 43(2), pages 149-177, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Colubi, Ana & Ramos-Guajardo, Ana Belén, 2023. "Fuzzy sets and (fuzzy) random sets in Econometrics and Statistics," Econometrics and Statistics, Elsevier, vol. 26(C), pages 84-98.
    2. Ferraro, Maria Brigida, 2024. "Fuzzy k-Means: history and applications," Econometrics and Statistics, Elsevier, vol. 30(C), pages 110-123.
    3. Doring, Christian & Lesot, Marie-Jeanne & Kruse, Rudolf, 2006. "Data analysis with fuzzy clustering methods," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 192-214, November.
    4. Coppi, Renato & D’Urso, Pierpaolo & Giordani, Paolo, 2012. "Fuzzy and possibilistic clustering for fuzzy data," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 915-927.
    5. Pierpaolo D'Urso & Paolo Giordani, 2006. "A robust fuzzy k-means clustering model for interval valued data," Computational Statistics, Springer, vol. 21(2), pages 251-269, June.
    6. D'Urso, Pierpaolo & Santoro, Adriana, 2006. "Fuzzy clusterwise linear regression analysis with symmetrical fuzzy output variable," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 287-313, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D'Urso, Pierpaolo & Giordani, Paolo, 2003. "A possibilistic approach to latent structure analysis for symmetric fuzzy data," Economics & Statistics Discussion Papers esdp03014, University of Molise, Department of Economics.
    2. D'Urso, Pierpaolo & Giordani, Paolo, 2003. "A least squares approach to Principal Component Analysis for interval valued data," Economics & Statistics Discussion Papers esdp03013, University of Molise, Department of Economics.
    3. Zhang, Y.M. & Huang, G.H. & He, L. & Li, Y.P., 2008. "Quality evaluation for composting products through fuzzy latent component analysis," Resources, Conservation & Recycling, Elsevier, vol. 52(10), pages 1132-1140.
    4. Coppi, Renato & D'Urso, Pierpaolo, 2006. "Fuzzy unsupervised classification of multivariate time trajectories with the Shannon entropy regularization," Computational Statistics & Data Analysis, Elsevier, vol. 50(6), pages 1452-1477, March.
    5. Vaishali Mirge & Kesari Verma & Shubhrata Gupta, 2017. "Dense traffic flow patterns mining in bi-directional road networks using density based trajectory clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 547-561, September.
    6. Pierpaolo D’Urso & Livia De Giovanni & Riccardo Massari & Francesca G. M. Sica, 2019. "Cross Sectional and Longitudinal Fuzzy Clustering of the NUTS and Positioning of the Italian Regions with Respect to the Regional Competitiveness Index (RCI) Indicators with Contiguity Constraints," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(3), pages 609-650, December.
    7. Doring, Christian & Lesot, Marie-Jeanne & Kruse, Rudolf, 2006. "Data analysis with fuzzy clustering methods," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 192-214, November.
    8. Pierpaolo D’Urso & María Ángeles Gil, 2017. "Fuzzy data analysis and classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 645-657, December.
    9. Coppi, Renato & Gil, Maria A. & Kiers, Henk A.L., 2006. "The fuzzy approach to statistical analysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 1-14, November.
    10. repec:kap:stmapp:v:16:y:2007:i:2:p:173-192 is not listed on IDEAS
    11. J. Le-Rademacher & L. Billard, 2013. "Principal component histograms from interval-valued observations," Computational Statistics, Springer, vol. 28(5), pages 2117-2138, October.
    12. Giordani, Paolo & Kiers, Henk A.L., 2006. "A comparison of three methods for principal component analysis of fuzzy interval data," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 379-397, November.
    13. Giordani, Paolo, 2010. "Three-way analysis of imprecise data," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 568-582, March.
    14. B. Lafuente-Rego & P. D’Urso & J. A. Vilar, 2020. "Robust fuzzy clustering based on quantile autocovariances," Statistical Papers, Springer, vol. 61(6), pages 2393-2448, December.
    15. Renato Coppi & Paolo Giordani & Pierpaolo D’Urso, 2006. "Component Models for Fuzzy Data," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 733-761, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:50:y:2006:i:6:p:1496-1523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.