IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v51y2006i1p287-313.html
   My bibliography  Save this article

Fuzzy clusterwise linear regression analysis with symmetrical fuzzy output variable

Author

Listed:
  • D'Urso, Pierpaolo
  • Santoro, Adriana

Abstract

No abstract is available for this item.

Suggested Citation

  • D'Urso, Pierpaolo & Santoro, Adriana, 2006. "Fuzzy clusterwise linear regression analysis with symmetrical fuzzy output variable," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 287-313, November.
  • Handle: RePEc:eee:csdana:v:51:y:2006:i:1:p:287-313
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(06)00191-5
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Veaux, Richard D., 1989. "Mixtures of linear regressions," Computational Statistics & Data Analysis, Elsevier, vol. 8(3), pages 227-245, November.
    2. D'Urso, Pierpaolo & Giordani, Paolo, 2006. "A weighted fuzzy c-means clustering model for fuzzy data," Computational Statistics & Data Analysis, Elsevier, vol. 50(6), pages 1496-1523, March.
    3. Van Aelst, Stefan & (Steven) Wang, Xiaogang & Zamar, Ruben H. & Zhu, Rong, 2006. "Linear grouping using orthogonal regression," Computational Statistics & Data Analysis, Elsevier, vol. 50(5), pages 1287-1312, March.
    4. Preda, C. & Saporta, G., 2005. "Clusterwise PLS regression on a stochastic process," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 99-108, April.
    5. Coppi, Renato & D'Urso, Pierpaolo & Giordani, Paolo & Santoro, Adriana, 2006. "Least squares estimation of a linear regression model with LR fuzzy response," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 267-286, November.
    6. Wayne DeSarbo & Richard Oliver & Arvind Rangaswamy, 1989. "A simulated annealing methodology for clusterwise linear regression," Psychometrika, Springer;The Psychometric Society, vol. 54(4), pages 707-736, September.
    7. Aurifeille, Jacques-Marie & Quester, Pascale G., 2003. "Predicting business ethical tolerance in international markets: a concomitant clusterwise regression analysis," International Business Review, Elsevier, vol. 12(2), pages 253-272, April.
    8. Wayne DeSarbo & William Cron, 1988. "A maximum likelihood methodology for clusterwise linear regression," Journal of Classification, Springer;The Classification Society, vol. 5(2), pages 249-282, September.
    9. Lau, Kin-nam & Leung, Pui-lam & Tse, Ka-kit, 1999. "A mathematical programming approach to clusterwise regression model and its extensions," European Journal of Operational Research, Elsevier, vol. 116(3), pages 640-652, August.
    10. Hennig, Christian, 2003. "Clusters, outliers, and regression: fixed point clusters," Journal of Multivariate Analysis, Elsevier, vol. 86(1), pages 183-212, July.
    11. Preda, C. & Saporta, G., 2005. "PLS regression on a stochastic process," Computational Statistics & Data Analysis, Elsevier, vol. 48(1), pages 149-158, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana Colubi & Renato Coppi & Pierpaolo D’urso & Maria angeles Gil, 2007. "Statistics with fuzzy random variables," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 277-303.
    2. Yuanping Li & Yanrong Chen & Yaoning Chen & Yanxin Wu & Chun Zhang & Zhen Peng & Yihuan Liu & Sha Wang & Ran Xu & Ziping Zeng, 2019. "Effects of Physico-Chemical Parameters on Actinomycetes Communities during Composting of Agricultural Waste," Sustainability, MDPI, vol. 11(8), pages 1-13, April.
    3. Coppi, Renato & Gil, Maria A. & Kiers, Henk A.L., 2006. "The fuzzy approach to statistical analysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bagirov, Adil M. & Ugon, Julien & Mirzayeva, Hijran, 2013. "Nonsmooth nonconvex optimization approach to clusterwise linear regression problems," European Journal of Operational Research, Elsevier, vol. 229(1), pages 132-142.
    2. Joki, Kaisa & Bagirov, Adil M. & Karmitsa, Napsu & Mäkelä, Marko M. & Taheri, Sona, 2020. "Clusterwise support vector linear regression," European Journal of Operational Research, Elsevier, vol. 287(1), pages 19-35.
    3. Adil M. Bagirov & Julien Ugon & Hijran G. Mirzayeva, 2015. "Nonsmooth Optimization Algorithm for Solving Clusterwise Linear Regression Problems," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 755-780, March.
    4. Réal Carbonneau & Gilles Caporossi & Pierre Hansen, 2014. "Globally Optimal Clusterwise Regression By Column Generation Enhanced with Heuristics, Sequencing and Ending Subset Optimization," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 219-241, July.
    5. Carbonneau, Réal A. & Caporossi, Gilles & Hansen, Pierre, 2011. "Globally optimal clusterwise regression by mixed logical-quadratic programming," European Journal of Operational Research, Elsevier, vol. 212(1), pages 213-222, July.
    6. L. A. García‐Escudero & A. Gordaliza & R. San Martín & S. Van Aelst & R. Zamar, 2009. "Robust linear clustering," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 301-318, January.
    7. Stéphanie Bougeard & Hervé Abdi & Gilbert Saporta & Ndèye Niang, 2018. "Clusterwise analysis for multiblock component methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 285-313, June.
    8. Rainer Schlittgen, 2011. "A weighted least-squares approach to clusterwise regression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(2), pages 205-217, June.
    9. Xavier Bry & Ndèye Niang & Thomas Verron & Stéphanie Bougeard, 2023. "Clusterwise elastic-net regression based on a combined information criterion," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 75-107, March.
    10. Tianyu Tan & Hye Suk & Heungsun Hwang & Jooseop Lim, 2013. "Functional fuzzy clusterwise regression analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(1), pages 57-82, March.
    11. Kondylis, Athanassios & Whittaker, Joe, 2008. "Spectral preconditioning of Krylov spaces: Combining PLS and PC regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2588-2603, January.
    12. Ufuk Beyaztas & Han Lin Shang, 2021. "A partial least squares approach for function-on-function interaction regression," Computational Statistics, Springer, vol. 36(2), pages 911-939, June.
    13. Comte , Fabienne & Johannes, Jan, 2011. "Adaptive functional linear regression," LIDAM Discussion Papers ISBA 2011038, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Manteiga, Wenceslao Gonzalez & Vieu, Philippe, 2007. "Statistics for Functional Data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4788-4792, June.
    15. García-Escudero, L.A. & Gordaliza, A. & Mayo-Iscar, A. & San Martín, R., 2010. "Robust clusterwise linear regression through trimming," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3057-3069, December.
    16. Tingting Huang & Gilbert Saporta & Huiwen Wang & Shanshan Wang, 2021. "A robust spatial autoregressive scalar-on-function regression with t-distribution," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 57-81, March.
    17. Manuel Febrero-Bande & Pedro Galeano & Wenceslao González-Manteiga, 2017. "Functional Principal Component Regression and Functional Partial Least-squares Regression: An Overview and a Comparative Study," International Statistical Review, International Statistical Institute, vol. 85(1), pages 61-83, April.
    18. Eduardo García‐Portugués & Javier Álvarez‐Liébana & Gonzalo Álvarez‐Pérez & Wenceslao González‐Manteiga, 2021. "A goodness‐of‐fit test for the functional linear model with functional response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 502-528, June.
    19. Gabriele Perrone & Gabriele Soffritti, 2023. "Seemingly unrelated clusterwise linear regression for contaminated data," Statistical Papers, Springer, vol. 64(3), pages 883-921, June.
    20. Hernandez Roig, Harold Antonio & Aguilera Morillo, María del Carmen & Aguilera, Ana M. & Preda, Cristian, 2023. "Penalized function-on-function partial leastsquares regression," DES - Working Papers. Statistics and Econometrics. WS 37758, Universidad Carlos III de Madrid. Departamento de Estadística.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:51:y:2006:i:1:p:287-313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.