IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v11y2017i3d10.1007_s11634-016-0256-8.html
   My bibliography  Save this article

Dense traffic flow patterns mining in bi-directional road networks using density based trajectory clustering

Author

Listed:
  • Vaishali Mirge

    (M M College of Technology)

  • Kesari Verma

    (National Institute of Technology)

  • Shubhrata Gupta

    (National Institute of Technology)

Abstract

Due to the rapid growth of wireless communications and positioning technologies, trajectory data have become increasingly popular, posing great challenges to the researchers of data mining and machine learning community. Trajectory data are obtained using GPS devices that capture the position of an object at specific time intervals. These enormous amounts of data necessitates to explore efficient and effective techniques to extract useful information to solve real world problems. Traffic flow pattern mining is one of the challenging issues for many applications. In a literature significant number of approaches are available to cluster the trajectory data, however the clustering has not been explored for trajectories pattern mining in bi-directional road networks. This paper presents a novel technique for excavating heavy traffic flow patterns in bi-directional road network, i.e. identifying divisions of the roads where the traffic flow is very dense. The proposed technique works in two phases: phase I, finds the clusters of trajectory points based on density of trajectory points; phase II, arranges the clusters in sequence based on spatiotemporal values for each route and directions. These sequences represent the traffic flow patterns. All the routes and sections exceeding a user specified minimum traffic threshold are marked as high dense traffic areas. The experiments are performed on synthetic dataset. The proposed algorithm efficiently and accurately finds the dense traffic in bi-directional roads. Proposed clustering method is compared with the standard k-means clustering algorithm for the performance evaluation.

Suggested Citation

  • Vaishali Mirge & Kesari Verma & Shubhrata Gupta, 2017. "Dense traffic flow patterns mining in bi-directional road networks using density based trajectory clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 547-561, September.
  • Handle: RePEc:spr:advdac:v:11:y:2017:i:3:d:10.1007_s11634-016-0256-8
    DOI: 10.1007/s11634-016-0256-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-016-0256-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-016-0256-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Coppi, Renato & D'Urso, Pierpaolo, 2006. "Fuzzy unsupervised classification of multivariate time trajectories with the Shannon entropy regularization," Computational Statistics & Data Analysis, Elsevier, vol. 50(6), pages 1452-1477, March.
    2. Renato Coppi & Pierpaolo D’Urso & Paolo Giordani, 2010. "A Fuzzy Clustering Model for Multivariate Spatial Time Series," Journal of Classification, Springer;The Classification Society, vol. 27(1), pages 54-88, March.
    3. Coppi, Renato & D'Urso, Pierpaolo, 2003. "Three-way fuzzy clustering models for LR fuzzy time trajectories," Computational Statistics & Data Analysis, Elsevier, vol. 43(2), pages 149-177, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongjian Ma, 2020. "Improvement of table tennis technology based on data mining in the environment of wireless sensor networks," International Journal of Distributed Sensor Networks, , vol. 16(10), pages 15501477209, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierpaolo D’Urso & Livia De Giovanni & Riccardo Massari & Francesca G. M. Sica, 2019. "Cross Sectional and Longitudinal Fuzzy Clustering of the NUTS and Positioning of the Italian Regions with Respect to the Regional Competitiveness Index (RCI) Indicators with Contiguity Constraints," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(3), pages 609-650, December.
    2. Pierpaolo D’Urso & María Ángeles Gil, 2017. "Fuzzy data analysis and classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 645-657, December.
    3. B. Lafuente-Rego & P. D’Urso & J. A. Vilar, 2020. "Robust fuzzy clustering based on quantile autocovariances," Statistical Papers, Springer, vol. 61(6), pages 2393-2448, December.
    4. Doring, Christian & Lesot, Marie-Jeanne & Kruse, Rudolf, 2006. "Data analysis with fuzzy clustering methods," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 192-214, November.
    5. Coppi, Renato & Gil, Maria A. & Kiers, Henk A.L., 2006. "The fuzzy approach to statistical analysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 1-14, November.
    6. Coppi, Renato & D'Urso, Pierpaolo, 2006. "Fuzzy unsupervised classification of multivariate time trajectories with the Shannon entropy regularization," Computational Statistics & Data Analysis, Elsevier, vol. 50(6), pages 1452-1477, March.
    7. D'Urso, Pierpaolo & Giordani, Paolo, 2003. "A possibilistic approach to latent structure analysis for symmetric fuzzy data," Economics & Statistics Discussion Papers esdp03014, University of Molise, Department of Economics.
    8. Pierpaolo D’Urso & Vincenzina Vitale, 2022. "A Kemeny Distance-Based Robust Fuzzy Clustering for Preference Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 600-647, November.
    9. Renato Coppi & Pierpaolo D’Urso & Paolo Giordani, 2010. "A Fuzzy Clustering Model for Multivariate Spatial Time Series," Journal of Classification, Springer;The Classification Society, vol. 27(1), pages 54-88, March.
    10. Paolo Giordani & Henk Kiers, 2012. "FINDCLUS: Fuzzy INdividual Differences CLUStering," Journal of Classification, Springer;The Classification Society, vol. 29(2), pages 170-198, July.
    11. Egidi, Gianluca & Mosconi, Enrico Maria & Turco, Rosario & Salvati, Luca, 2023. "Functions follow structures? The long-term evolution of economic dynamics, social transformations, and landscape morphology in a Mediterranean metropolis," Land Use Policy, Elsevier, vol. 129(C).
    12. D’Urso, Pierpaolo & Manca, Germana & Waters, Nigel & Girone, Stefania, 2019. "Visualizing regional clusters of Sardinia's EU supported agriculture: A Spatial Fuzzy Partitioning Around Medoids," Land Use Policy, Elsevier, vol. 83(C), pages 571-580.
    13. D'Urso, Pierpaolo & Giordani, Paolo, 2006. "A weighted fuzzy c-means clustering model for fuzzy data," Computational Statistics & Data Analysis, Elsevier, vol. 50(6), pages 1496-1523, March.
    14. Alessia Benevento & Fabrizio Durante, 2023. "Wasserstein Dissimilarity for Copula-Based Clustering of Time Series with Spatial Information," Mathematics, MDPI, vol. 12(1), pages 1-15, December.
    15. Giuseppe Gabrielli & Anna Paterno & Silvana Salvini & Isabella Corazziari, 2021. "Demographic trends in less and least developed countries: Convergence or divergence?," Journal of Population Research, Springer, vol. 38(3), pages 221-258, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:11:y:2017:i:3:d:10.1007_s11634-016-0256-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.