IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2632-d1054292.html
   My bibliography  Save this article

A Method for Allocation of Carbon Emission Quotas to Provincial-Level Industries in China Based on DEA

Author

Listed:
  • Chenpeng Feng

    (School of Management, Hefei University of Technology, Hefei 230009, China)

  • Rong Zhou

    (School of Management, Hefei University of Technology, Hefei 230009, China)

  • Jingjing Ding

    (School of Management, Hefei University of Technology, Hefei 230009, China)

  • Xiangze Xiao

    (Zhejiang Economic Information Center, Hangzhou 310006, China)

  • Mingyue Pu

    (School of Accounting and Finance, Anhui Xinhua University, Hefei 230088, China)

Abstract

At present, China implements a quota-based trading mechanism to achieve carbon emission reduction, in which the allocation of carbon emission quotas among different provinces is short of considering the influence of unbalanced provincial development. Heterogeneity among the provincial-level three major industries, namely, agriculture, manufacturing and mining, and service industries, is a case in point. To address this insufficiency, this paper proposes a novel parallel data envelopment analysis (DEA) based method for carbon emission quota allocation. The method models each province as a decision-making unit (DMU) and the provincial-level three major industries as parallel sub-decision-making units (SDMUs). A distinguished feature of the method is that it makes explicit tradeoffs between efficiency and equality considerations for policymakers in allocating the carbon quotas among three heterogeneous provincial-level major industries. The empirical results show that the proposed method effectively improves the overall provincial gross domestic product (GDP) potentials through the reallocation of carbon quotas among industries while the equality level is not worse off. This work is helpful for policymakers to achieve a long-term emission reduction target and provides suggestions for improving the initial allocation mechanism of a national carbon trading market.

Suggested Citation

  • Chenpeng Feng & Rong Zhou & Jingjing Ding & Xiangze Xiao & Mingyue Pu, 2023. "A Method for Allocation of Carbon Emission Quotas to Provincial-Level Industries in China Based on DEA," Sustainability, MDPI, vol. 15(3), pages 1-21, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2632-:d:1054292
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2632/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2632/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feng Li & Ali Emrouznejad & Guo-liang Yang & Yongjun Li, 2020. "Carbon emission abatement quota allocation in Chinese manufacturing industries: An integrated cooperative game data envelopment analysis approach," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(8), pages 1259-1288, August.
    2. Marvin B. Mandell, 1991. "Modelling Effectiveness-Equity Trade-Offs in Public Service Delivery Systems," Management Science, INFORMS, vol. 37(4), pages 467-482, April.
    3. Mahdiloo, Mahdi & Ngwenyama, Ojelanki & Scheepers, Rens & Tamaddoni, Ali, 2018. "Managing emissions allowances of electricity producers to maximize CO2 abatement: DEA models for analyzing emissions and allocating emissions allowances," International Journal of Production Economics, Elsevier, vol. 205(C), pages 244-255.
    4. Xu, Xianshuo & Zhao, Tao & Liu, Nan & Kang, Jidong, 2014. "Changes of energy-related GHG emissions in China: An empirical analysis from sectoral perspective," Applied Energy, Elsevier, vol. 132(C), pages 298-307.
    5. Xiyang Lei & Yongjun Li & Qiwei Xie & Liang Liang, 2015. "Measuring Olympics achievements based on a parallel DEA approach," Annals of Operations Research, Springer, vol. 226(1), pages 379-396, March.
    6. Min Yang & Qingxian An & Tao Ding & Pengzhen Yin & Liang Liang, 2019. "Carbon emission allocation in China based on gradually efficiency improvement and emission reduction planning principle," Annals of Operations Research, Springer, vol. 278(1), pages 123-139, July.
    7. Fang, Kai & Zhang, Qifeng & Long, Yin & Yoshida, Yoshikuni & Sun, Lu & Zhang, Haoran & Dou, Yi & Li, Shuai, 2019. "How can China achieve its Intended Nationally Determined Contributions by 2030? A multi-criteria allocation of China’s carbon emission allowance," Applied Energy, Elsevier, vol. 241(C), pages 380-389.
    8. Ru Li & Bao-Jun Tang, 2016. "Initial carbon quota allocation methods of power sectors: a China case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1075-1089, November.
    9. E G Gomes & M P E Lins, 2008. "Modelling undesirable outputs with zero sum gains data envelopment analysis models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(5), pages 616-623, May.
    10. Wu, Jie & Zhu, Qingyuan & Liang, Liang, 2016. "CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China," Applied Energy, Elsevier, vol. 166(C), pages 282-291.
    11. Feng, Chenpeng & Chu, Feng & Ding, Jingjing & Bi, Gongbing & Liang, Liang, 2015. "Carbon Emissions Abatement (CEA) allocation and compensation schemes based on DEA," Omega, Elsevier, vol. 53(C), pages 78-89.
    12. Baumgartner, Stefan & Dyckhoff, Harald & Faber, Malte & Proops, John & Schiller, Johannes, 2001. "The concept of joint production and ecological economics," Ecological Economics, Elsevier, vol. 36(3), pages 365-372, March.
    13. Kao, Chiang, 2009. "Efficiency measurement for parallel production systems," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1107-1112, August.
    14. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "Measuring environmental performance under different environmental DEA technologies," Energy Economics, Elsevier, vol. 30(1), pages 1-14, January.
    15. Ang, Sheng & Liu, Pei & Yang, Feng, 2020. "Intra-Organizational and inter-organizational resource allocation in two-stage network systems," Omega, Elsevier, vol. 91(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anyu Yu & Hao Zhang & Hu-chen Liu & Yu Shi & Weilong Bi, 2024. "Dynamic centralized resource allocation approach with contextual impacts: analyzing Chinese carbon allocation plans," Annals of Operations Research, Springer, vol. 341(1), pages 451-483, October.
    2. Yu, Anyu & Lee, Andy & Chen, Yao, 2021. "Carbon allocation targeting with abatement capability: A firm-level study," International Journal of Production Economics, Elsevier, vol. 235(C).
    3. Chu, Junfei & Hou, Tianteng & Li, Feng & Yuan, Zhe, 2024. "Dynamic bargaining game DEA carbon emissions abatement allocation and the Nash equilibrium," Energy Economics, Elsevier, vol. 134(C).
    4. Feng, Chenpeng & Chu, Feng & Ding, Jingjing & Bi, Gongbing & Liang, Liang, 2015. "Carbon Emissions Abatement (CEA) allocation and compensation schemes based on DEA," Omega, Elsevier, vol. 53(C), pages 78-89.
    5. Yu, Anyu & You, Jianxin & Rudkin, Simon & Zhang, Hao, 2019. "Industrial carbon abatement allocations and regional collaboration: Re-evaluating China through a modified data envelopment analysis," Applied Energy, Elsevier, vol. 233, pages 232-243.
    6. Xie, Qiwei & Xu, Qifan & Zhu, Da & Rao, Kaifeng & Dai, Qianzhi, 2020. "Fair allocation of wastewater discharge permits based on satisfaction criteria using data envelopment analysis," Utilities Policy, Elsevier, vol. 66(C).
    7. Jie Wu & Panpan Xia & Qingyuan Zhu & Junfei Chu, 2019. "Measuring environmental efficiency of thermoelectric power plants: a common equilibrium efficient frontier DEA approach with fixed-sum undesirable output," Annals of Operations Research, Springer, vol. 275(2), pages 731-749, April.
    8. Yongjun Li & Wenhui Hou & Weiwei Zhu & Feng Li & Liang Liang, 2021. "Provincial carbon emission performance analysis in China based on a Malmquist data envelopment analysis approach with fixed-sum undesirable outputs," Annals of Operations Research, Springer, vol. 304(1), pages 233-261, September.
    9. Wu, Jie & Zhu, Qingyuan & Liang, Liang, 2016. "CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China," Applied Energy, Elsevier, vol. 166(C), pages 282-291.
    10. Yang, Mian & Hou, Yaru & Ji, Qiang & Zhang, Dayong, 2020. "Assessment and optimization of provincial CO2 emission reduction scheme in China: An improved ZSG-DEA approach," Energy Economics, Elsevier, vol. 91(C).
    11. Mahdiloo, Mahdi & Ngwenyama, Ojelanki & Scheepers, Rens & Tamaddoni, Ali, 2018. "Managing emissions allowances of electricity producers to maximize CO2 abatement: DEA models for analyzing emissions and allocating emissions allowances," International Journal of Production Economics, Elsevier, vol. 205(C), pages 244-255.
    12. Sun, J. & Wen, W. & Wang, M. & Zhou, P., 2022. "Optimizing the provincial target allocation scheme of renewable portfolio standards in China," Energy, Elsevier, vol. 250(C).
    13. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    14. Zhu, Bangzhu & Jiang, Mingxing & He, Kaijian & Chevallier, Julien & Xie, Rui, 2018. "Allocating CO2 allowances to emitters in China: A multi-objective decision approach," Energy Policy, Elsevier, vol. 121(C), pages 441-451.
    15. Wu, Yinyin & Wang, Ping & Liu, Xin & Chen, Jiandong & Song, Malin, 2020. "Analysis of regional carbon allocation and carbon trading based on net primary productivity in China," China Economic Review, Elsevier, vol. 60(C).
    16. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    17. Wang, Yunqi & Qiu, Jing & Tao, Yuechuan & Zhang, Xian & Wang, Guibin, 2020. "Low-carbon oriented optimal energy dispatch in coupled natural gas and electricity systems," Applied Energy, Elsevier, vol. 280(C).
    18. Li, Feng & Zhang, Danlu & Zhang, Jinyu & Kou, Gang, 2022. "Measuring the energy production and utilization efficiency of Chinese thermal power industry with the fixed-sum carbon emission constraint," International Journal of Production Economics, Elsevier, vol. 252(C).
    19. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.
    20. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2632-:d:1054292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.