IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v268y2018i1d10.1007_s10479-017-2414-6.html
   My bibliography  Save this article

Centralized fixed cost and resource allocation considering technology heterogeneity: a DEA approach

Author

Listed:
  • Tao Ding

    (Hefei University of Technology)

  • Ya Chen

    (Hefei University of Technology)

  • Huaqing Wu

    (Hefei University of Technology)

  • Yuqi Wei

    (Hefei University of Technology)

Abstract

Many studies have concentrated on fixed cost and resource allocation issues by using data envelopment analysis (DEA). The existing approaches allocate fixed cost or resource primary based on efficiency principle. They usually assume that all of the DMUs become efficient after fixed cost or resource allocation. However, due to the existing of technology heterogeneity among DMUs, it is impractical for all the DMUs to achieve a common technology level, especially when some DMUs are far from the efficient frontier. In this paper, under the centralized decision environment, we present a new approach to deal with fixed cost and resource allocation problems by considering the factor of technology heterogeneity. Specifically, the concepts of meta-efficiency and group efficiency as well as meta-technology ratio are firstly introduced to reflect the technology level of the DMUs. Then two centralized DEA models considering technology heterogeneity are proposed to allocate fixed cost and resources, respectively. Finally, two numerical examples are presented to illustrate the feasibility and superiority of the proposed approach compared with prior studies.

Suggested Citation

  • Tao Ding & Ya Chen & Huaqing Wu & Yuqi Wei, 2018. "Centralized fixed cost and resource allocation considering technology heterogeneity: a DEA approach," Annals of Operations Research, Springer, vol. 268(1), pages 497-511, September.
  • Handle: RePEc:spr:annopr:v:268:y:2018:i:1:d:10.1007_s10479-017-2414-6
    DOI: 10.1007/s10479-017-2414-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2414-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2414-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William W. Cooper & Lawrence M. Seiford & Joe Zhu (ed.), 2011. "Handbook on Data Envelopment Analysis," International Series in Operations Research and Management Science, Springer, number 978-1-4419-6151-8, January.
    2. Fang, Lei, 2013. "A generalized DEA model for centralized resource allocation," European Journal of Operational Research, Elsevier, vol. 228(2), pages 405-412.
    3. Seiford, Lawrence M. & Zhu, Joe, 2003. "Context-dependent data envelopment analysis--Measuring attractiveness and progress," Omega, Elsevier, vol. 31(5), pages 397-408, October.
    4. Du, Juan & Cook, Wade D. & Liang, Liang & Zhu, Joe, 2014. "Fixed cost and resource allocation based on DEA cross-efficiency," European Journal of Operational Research, Elsevier, vol. 235(1), pages 206-214.
    5. Cook, Wade D. & Kress, Moshe, 1999. "Characterizing an equitable allocation of shared costs: A DEA approach," European Journal of Operational Research, Elsevier, vol. 119(3), pages 652-661, December.
    6. Beasley, J. E., 2003. "Allocating fixed costs and resources via data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 147(1), pages 198-216, May.
    7. Cecilio Mar-Molinero & Diego Prior & Maria-Manuela Segovia & Fabiola Portillo, 2014. "On centralized resource utilization and its reallocation by using DEA," Annals of Operations Research, Springer, vol. 221(1), pages 273-283, October.
    8. Fang, Lei, 2015. "Centralized resource allocation based on efficiency analysis for step-by-step improvement paths," Omega, Elsevier, vol. 51(C), pages 24-28.
    9. Wang, Qunwei & Zhao, Zengyao & Zhou, Peng & Zhou, Dequn, 2013. "Energy efficiency and production technology heterogeneity in China: A meta-frontier DEA approach," Economic Modelling, Elsevier, vol. 35(C), pages 283-289.
    10. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    11. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    12. Joe Zhu, 2014. "DEA Cross Efficiency," International Series in Operations Research & Management Science, in: Quantitative Models for Performance Evaluation and Benchmarking, edition 3, chapter 4, pages 61-92, Springer.
    13. Asmild, Mette & Paradi, Joseph C. & Pastor, Jesus T., 2009. "Centralized resource allocation BCC models," Omega, Elsevier, vol. 37(1), pages 40-49, February.
    14. Lozano, S. & Villa, G. & Brännlund, R., 2009. "Centralised reallocation of emission permits using DEA," European Journal of Operational Research, Elsevier, vol. 193(3), pages 752-760, March.
    15. Sebastián Lozano & Gabriel Villa, 2004. "Centralized Resource Allocation Using Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 22(1), pages 143-161, July.
    16. George E. Battese & D. S. Prasada Rao, 2002. "Technology Gap, Efficiency, and a Stochastic Metafrontier Function," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 1(2), pages 87-93, August.
    17. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    18. Amirteimoori, Alireza & Kordrostami, Sohrab, 2012. "Production planning in data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 140(1), pages 212-218.
    19. HATAMI-MARBINI, Adel & TAVANA, Madjid & SAATI, Saber & AGRELL, Per J., 2013. "Allocating fixed resources and setting targets using a common-weights DEA approach," LIDAM Reprints CORE 2474, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    21. Li, Yongjun & Yang, Feng & Liang, Liang & Hua, Zhongsheng, 2009. "Allocating the fixed cost as a complement of other cost inputs: A DEA approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 389-401, August.
    22. Feng, Chenpeng & Chu, Feng & Ding, Jingjing & Bi, Gongbing & Liang, Liang, 2015. "Carbon Emissions Abatement (CEA) allocation and compensation schemes based on DEA," Omega, Elsevier, vol. 53(C), pages 78-89.
    23. Pekka Korhonen & Mikko Syrjänen, 2004. "Resource Allocation Based on Efficiency Analysis," Management Science, INFORMS, vol. 50(8), pages 1134-1144, August.
    24. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davtalab-Olyaie, Mostafa & Begen, Mehmet A. & Yang, Zijiang & Asgharian, Masoud, 2024. "Incentivization in centrally managed systems: Inconsistencies resolution," Omega, Elsevier, vol. 129(C).
    2. Zhang, Chonghui & Wang, Zhen & Su, Weihua & Dalia, Streimikiene, 2024. "Differentiated power rationing or seasonal power price? Optimal power allocation solution for Chinese industrial enterprises based on the CSW-DEA model," Applied Energy, Elsevier, vol. 353(PB).
    3. Menghan Chen & Sheng Ang & Lijing Jiang & Feng Yang, 2020. "Centralized resource allocation based on cross-evaluation considering organizational objective and individual preferences," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 529-565, June.
    4. Mohsen Afsharian, 2020. "A metafrontier-based yardstick competition mechanism for incentivising units in centrally managed multi-group organisations," Annals of Operations Research, Springer, vol. 288(2), pages 681-700, May.
    5. Elizabeth Ahikiriza & Jef Meensel & Xavier Gellynck & Ludwig Lauwers, 2021. "Heterogeneity in frontier analysis: does it matter for benchmarking farms?," Journal of Productivity Analysis, Springer, vol. 56(2), pages 69-84, December.
    6. Mostafa Davtalab-Olyaie & Hadis Mahmudi-Baram & Masoud Asgharian, 2023. "Measuring individual efficiency and unit influence in centrally managed systems," Annals of Operations Research, Springer, vol. 321(1), pages 139-164, February.
    7. Li, Yongjun & Lin, Lin & Dai, Qianzhi & Zhang, Linda, 2020. "Allocating common costs of multinational companies based on arm's length principle and Nash non-cooperative game," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1002-1010.
    8. Xie, Qiwei & Xu, Qifan & Zhu, Da & Rao, Kaifeng & Dai, Qianzhi, 2020. "Fair allocation of wastewater discharge permits based on satisfaction criteria using data envelopment analysis," Utilities Policy, Elsevier, vol. 66(C).
    9. Jiasen Sun & Guo Li, 2022. "Optimizing emission reduction task sharing: technology and performance perspectives," Annals of Operations Research, Springer, vol. 316(1), pages 581-602, September.
    10. Mehdi Soltanifar & Farhad Hosseinzadeh Lotfi & Hamid Sharafi & Sebastián Lozano, 2022. "Resource allocation and target setting: a CSW–DEA based approach," Annals of Operations Research, Springer, vol. 318(1), pages 557-589, November.
    11. Qingxian An & Ping Wang & Honglin Yang & Zongrun Wang, 2021. "Fixed cost allocation in two-stage system using DEA from a noncooperative view," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 1077-1102, December.
    12. Yu, Anyu & Zhang, Qin & Yu, Rongjian & Cheng, Yu, 2023. "More is better or in waste? A resource allocation measure of government grants for facilitating firm innovations," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    13. Ding, Tao & Yang, Jie & Wu, Huaqing & Liang, Liang, 2022. "Land use efficiency and technology gaps of urban agglomerations in China: An extended non-radial meta-frontier approach," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    14. An, Qingxian & Wang, Ping & Emrouznejad, Ali & Hu, Junhua, 2020. "Fixed cost allocation based on the principle of efficiency invariance in two-stage systems," European Journal of Operational Research, Elsevier, vol. 283(2), pages 662-675.
    15. Tao Xu & Jianxin You & Yilei Shao, 2020. "Efficiency of China’s Listed Securities Companies: Estimation through a DEA-Based Method," Mathematics, MDPI, vol. 8(4), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng Li & Qingyuan Zhu & Liang Liang, 2019. "A new data envelopment analysis based approach for fixed cost allocation," Annals of Operations Research, Springer, vol. 274(1), pages 347-372, March.
    2. Menghan Chen & Sheng Ang & Lijing Jiang & Feng Yang, 2020. "Centralized resource allocation based on cross-evaluation considering organizational objective and individual preferences," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 529-565, June.
    3. Wu, Jie & Zhu, Qingyuan & Liang, Liang, 2016. "CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China," Applied Energy, Elsevier, vol. 166(C), pages 282-291.
    4. Adel Hatami-Marbini & Zahra Ghelej Beigi & Hirofumi Fukuyama & Kobra Gholami, 2015. "Modeling Centralized Resources Allocation and Target Setting in Imprecise Data Envelopment Analysis," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 1189-1213, November.
    5. Lozano, Sebastián & Contreras, Ignacio, 2022. "Centralised resource allocation using Lexicographic Goal Programming. Application to the Spanish public university system," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    6. Xiong, Xi & Yang, Guo-liang & Zhou, De-qun & Wang, Zi-long, 2022. "How to allocate multi-period research resources? Centralized resource allocation for public universities in China using a parallel DEA-based approach," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    7. Jie Wu & Jun-Fei Chu & Liang Liang, 2016. "Target setting and allocation of carbon emissions abatement based on DEA and closest target: an application to 20 APEC economies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 279-296, November.
    8. Mehdi Soltanifar & Farhad Hosseinzadeh Lotfi & Hamid Sharafi & Sebastián Lozano, 2022. "Resource allocation and target setting: a CSW–DEA based approach," Annals of Operations Research, Springer, vol. 318(1), pages 557-589, November.
    9. Dai, Qianzhi & Li, Yongjun & Lei, Xiyang & Wu, Dengsheng, 2021. "A DEA-based incentive approach for allocating common revenues or fixed costs," European Journal of Operational Research, Elsevier, vol. 292(2), pages 675-686.
    10. Walheer, Barnabe & Hudik, Marek, 2019. "Reallocation of resources in multidivisional firms: A nonparametric approach," International Journal of Production Economics, Elsevier, vol. 214(C), pages 196-205.
    11. Jie Wu & Qingyuan Zhu & Wade D Cook & Joe Zhu, 2016. "Best cooperative partner selection and input resource reallocation using DEA," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(9), pages 1221-1237, September.
    12. Davtalab-Olyaie, Mostafa & Begen, Mehmet A. & Yang, Zijiang & Asgharian, Masoud, 2024. "Incentivization in centrally managed systems: Inconsistencies resolution," Omega, Elsevier, vol. 129(C).
    13. Yingying Shao & Gongbing Bi & Feng Yang & Qiong Xia, 2018. "Resource allocation for branch network system with considering heterogeneity based on DEA method," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 1005-1025, December.
    14. Li, Feng & Zhu, Qingyuan & Chen, Zhi, 2019. "Allocating a fixed cost across the decision making units with two-stage network structures," Omega, Elsevier, vol. 83(C), pages 139-154.
    15. Akram Dehnokhalaji & Mojtaba Ghiyasi & Pekka Korhonen, 2017. "Resource allocation based on cost efficiency," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1279-1289, October.
    16. Liesiö, Juuso & Andelmin, Juho & Salo, Ahti, 2020. "Efficient allocation of resources to a portfolio of decision making units," European Journal of Operational Research, Elsevier, vol. 286(2), pages 619-636.
    17. Yu, Ming-Miin & Chen, Li-Hsueh, 2016. "Centralized resource allocation with emission resistance in a two-stage production system: Evidence from a Taiwan’s container shipping company," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 650-671.
    18. Amirteimoori, Alireza & Kazemi Matin, Reza & Yadollahi, Amir Hossein, 2024. "Stochastic resource reallocation in two-stage production processes with undesirable outputs: An empirical study on the power industry," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    19. Afsharian, Mohsen & Ahn, Heinz & Harms, Sören Guntram, 2021. "A review of DEA approaches applying a common set of weights: The perspective of centralized management," European Journal of Operational Research, Elsevier, vol. 294(1), pages 3-15.
    20. Feng, Chenpeng & Chu, Feng & Ding, Jingjing & Bi, Gongbing & Liang, Liang, 2015. "Carbon Emissions Abatement (CEA) allocation and compensation schemes based on DEA," Omega, Elsevier, vol. 53(C), pages 78-89.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:268:y:2018:i:1:d:10.1007_s10479-017-2414-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.