IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v339y2024i3d10.1007_s10479-022-04642-2.html
   My bibliography  Save this article

Orthogonal nonnegative matrix factorization problems for clustering: A new formulation and a competitive algorithm

Author

Listed:
  • Ja’far Dehghanpour

    (Sharif University of Technology)

  • Nezam Mahdavi-Amiri

    (Sharif University of Technology)

Abstract

Orthogonal Nonnegative Matrix Factorization (ONMF) with orthogonality constraints on a matrix has been found to provide better clustering results over existing clustering problems. Because of the orthogonality constraint, this optimization problem is difficult to solve. Many of the existing constraint-preserving methods deal directly with the constraints using different techniques such as matrix decomposition or computing exponential matrices. Here, we propose an alternative formulation of the ONMF problem which converts the orthogonality constraints into non-convex constraints. To handle the non-convex constraints, a penalty function is applied. The penalized problem is a smooth nonlinear programming problem with quadratic (convex) constraints that can be solved by a proper optimization method. We first make use of an optimization method with two gradient projection steps and then apply a post-processing technique to construct a partition of the clustering problem. Comparative performance analysis of our proposed approach with other available clustering methods on randomly generated test problems and hard synthetic data-sets shows the outperformance of our approach, in terms of the obtained misclassification error rate and the Rand index.

Suggested Citation

  • Ja’far Dehghanpour & Nezam Mahdavi-Amiri, 2024. "Orthogonal nonnegative matrix factorization problems for clustering: A new formulation and a competitive algorithm," Annals of Operations Research, Springer, vol. 339(3), pages 1481-1497, August.
  • Handle: RePEc:spr:annopr:v:339:y:2024:i:3:d:10.1007_s10479-022-04642-2
    DOI: 10.1007/s10479-022-04642-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04642-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04642-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:339:y:2024:i:3:d:10.1007_s10479-022-04642-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.