IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i6p890-d366145.html
   My bibliography  Save this article

COVID-19 Pandemic Prediction for Hungary; A Hybrid Machine Learning Approach

Author

Listed:
  • Gergo Pinter

    (John von Neumann Faculty of Informatics, Obuda University, 1034 Budapest, Hungary)

  • Imre Felde

    (John von Neumann Faculty of Informatics, Obuda University, 1034 Budapest, Hungary)

  • Amir Mosavi

    (Faculty of Civil Engineering, Technische Universität Dresden, 01069 Dresden, Germany
    Kalman Kando Faculty of Electrical Engineering, Obuda University, 1034 Budapest, Hungary
    Thuringian Institute of Sustainability and Climate Protection, 07743 Jena, Germany
    Department of Mathematics, J. Selye University, 94501 Komarno, Slovakia)

  • Pedram Ghamisi

    (Machine Learning Group, Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Chemnitzer Straße 40, 09599 Freiberg, Germany)

  • Richard Gloaguen

    (Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Chemnitzer Straße 40, 09599 Freiberg, Germany)

Abstract

Several epidemiological models are being used around the world to project the number of infected individuals and the mortality rates of the COVID-19 outbreak. Advancing accurate prediction models is of utmost importance to take proper actions. Due to the lack of essential data and uncertainty, the epidemiological models have been challenged regarding the delivery of higher accuracy for long-term prediction. As an alternative to the susceptible-infected-resistant (SIR)-based models, this study proposes a hybrid machine learning approach to predict the COVID-19, and we exemplify its potential using data from Hungary. The hybrid machine learning methods of adaptive network-based fuzzy inference system (ANFIS) and multi-layered perceptron-imperialist competitive algorithm (MLP-ICA) are proposed to predict time series of infected individuals and mortality rate. The models predict that by late May, the outbreak and the total morality will drop substantially. The validation is performed for 9 days with promising results, which confirms the model accuracy. It is expected that the model maintains its accuracy as long as no significant interruption occurs. This paper provides an initial benchmarking to demonstrate the potential of machine learning for future research.

Suggested Citation

  • Gergo Pinter & Imre Felde & Amir Mosavi & Pedram Ghamisi & Richard Gloaguen, 2020. "COVID-19 Pandemic Prediction for Hungary; A Hybrid Machine Learning Approach," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:890-:d:366145
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/6/890/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/6/890/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deming Lei & Yue Yuan & Jingcao Cai & Danyu Bai, 2020. "An imperialist competitive algorithm with memory for distributed unrelated parallel machines scheduling," International Journal of Production Research, Taylor & Francis Journals, vol. 58(2), pages 597-614, January.
    2. Mohandes, M. & Rehman, S. & Rahman, S.M., 2011. "Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS)," Applied Energy, Elsevier, vol. 88(11), pages 4024-4032.
    3. Martin Rypdal & George Sugihara, 2019. "Inter-outbreak stability reflects the size of the susceptible pool and forecasts magnitudes of seasonal epidemics," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    4. Shannon M. Fast & Louis Kim & Emily L. Cohn & Sumiko R. Mekaru & John S. Brownstein & Natasha Markuzon, 2018. "Predicting social response to infectious disease outbreaks from internet-based news streams," Annals of Operations Research, Springer, vol. 263(1), pages 551-564, April.
    5. Zohreh Sheikh Khozani & Saeid Sheikhi & Wan Hanna Melini Wan Mohtar & Amir Mosavi, 2020. "Forecasting shear stress parameters in rectangular channels using new soft computing methods," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-18, April.
    6. Samuel V. Scarpino & Giovanni Petri, 2019. "On the predictability of infectious disease outbreaks," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    7. Saeed Nosratabadi & Amir Mosavi & Puhong Duan & Pedram Ghamisi, 2020. "Data Science in Economics," Papers 2003.13422, arXiv.org.
    8. Sina Ardabili & Amir Mosavi & Asghar Mahmoudi & Tarahom Mesri Gundoshmian & Saeed Nosratabadi & Annamaria R. Varkonyi-Koczy, 2020. "Modelling Temperature Variation of Mushroom Growing Hall Using Artificial Neural Networks," Papers 2010.02673, arXiv.org.
    9. Mostafaei, Mostafa & Javadikia, Hossein & Naderloo, Leila, 2016. "Modeling the effects of ultrasound power and reactor dimension on the biodiesel production yield: Comparison of prediction abilities between response surface methodology (RSM) and adaptive neuro-fuzzy," Energy, Elsevier, vol. 115(P1), pages 626-636.
    10. Dantas, Eber & Tosin, Michel & Cunha Jr, Americo, 2018. "Calibration of a SEIR–SEI epidemic model to describe the Zika virus outbreak in Brazil," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 249-259.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Csaba G. TÓTH, 2022. "Narrowing the gap in regional and age-specific excess mortality during the COVID-19 in Hungary," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13, pages 185-207, June.
    2. Haghighat, Fatemeh, 2021. "Predicting the trend of indicators related to Covid-19 using the combined MLP-MC model," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Abdelrahman E. E. Eltoukhy & Ibrahim Abdelfadeel Shaban & Felix T. S. Chan & Mohammad A. M. Abdel-Aal, 2020. "Data Analytics for Predicting COVID-19 Cases in Top Affected Countries: Observations and Recommendations," IJERPH, MDPI, vol. 17(19), pages 1-25, September.
    4. Gabriel Sepulveda & Abraham J. Arenas & Gilberto González-Parra, 2023. "Mathematical Modeling of COVID-19 Dynamics under Two Vaccination Doses and Delay Effects," Mathematics, MDPI, vol. 11(2), pages 1-30, January.
    5. Yulan Li & Kun Ma, 2022. "A Hybrid Model Based on Improved Transformer and Graph Convolutional Network for COVID-19 Forecasting," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
    6. Jelena Musulin & Sandi Baressi Šegota & Daniel Štifanić & Ivan Lorencin & Nikola Anđelić & Tijana Šušteršič & Anđela Blagojević & Nenad Filipović & Tomislav Ćabov & Elitza Markova-Car, 2021. "Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review," IJERPH, MDPI, vol. 18(8), pages 1-39, April.
    7. Amir Masoud Rahmani & Efat Yousefpoor & Mohammad Sadegh Yousefpoor & Zahid Mehmood & Amir Haider & Mehdi Hosseinzadeh & Rizwan Ali Naqvi, 2021. "Machine Learning (ML) in Medicine: Review, Applications, and Challenges," Mathematics, MDPI, vol. 9(22), pages 1-52, November.
    8. Albertus J. Smit & Jennifer M. Fitchett & Francois A. Engelbrecht & Robert J. Scholes & Godfrey Dzhivhuho & Neville A. Sweijd, 2020. "Winter Is Coming: A Southern Hemisphere Perspective of the Environmental Drivers of SARS-CoV-2 and the Potential Seasonality of COVID-19," IJERPH, MDPI, vol. 17(16), pages 1-28, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yulan Li & Yang Wang & Kun Ma, 2022. "Integrating Transformer and GCN for COVID-19 Forecasting," Sustainability, MDPI, vol. 14(16), pages 1-15, August.
    2. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    3. Muhammad, Gul & Potchamyou Ngatcha, Ange Douglas & Lv, Yongkun & Xiong, Wenlong & El-Badry, Yaser A. & Asmatulu, Eylem & Xu, Jingliang & Alam, Md Asraful, 2022. "Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 184(C), pages 753-764.
    4. Yulan Li & Kun Ma, 2022. "A Hybrid Model Based on Improved Transformer and Graph Convolutional Network for COVID-19 Forecasting," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
    5. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    6. Koo, Junmo & Han, Gwon Deok & Choi, Hyung Jong & Shim, Joon Hyung, 2015. "Wind-speed prediction and analysis based on geological and distance variables using an artificial neural network: A case study in South Korea," Energy, Elsevier, vol. 93(P2), pages 1296-1302.
    7. Liu, Hui & Tian, Hong-qi & Pan, Di-fu & Li, Yan-fei, 2013. "Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks," Applied Energy, Elsevier, vol. 107(C), pages 191-208.
    8. Yunhwan Kim & Ana Vivas Barber & Sunmi Lee, 2020. "Modeling influenza transmission dynamics with media coverage data of the 2009 H1N1 outbreak in Korea," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-21, June.
    9. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    10. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "A SIR model assumption for the spread of COVID-19 in different communities," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    11. Iftikhar Ahmad & Adil Sana & Manabu Kano & Izzat Iqbal Cheema & Brenno C. Menezes & Junaid Shahzad & Zahid Ullah & Muzammil Khan & Asad Habib, 2021. "Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions," Energies, MDPI, vol. 14(16), pages 1-27, August.
    12. Yong-Chao Su & Cheng-Yu Wu & Cheng-Hong Yang & Bo-Sheng Li & Sin-Hua Moi & Yu-Da Lin, 2021. "Machine Learning Data Imputation and Prediction of Foraging Group Size in a Kleptoparasitic Spider," Mathematics, MDPI, vol. 9(4), pages 1-16, February.
    13. Martins, Adriel M.F. & Fernandes, Leonardo H.S. & Nascimento, Abraão D.C., 2023. "Scientific progress in information theory quantifiers," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    14. Burlibaşa, A. & Ceangă, E., 2013. "Rotationally sampled spectrum approach for simulation of wind speed turbulence in large wind turbines," Applied Energy, Elsevier, vol. 111(C), pages 624-635.
    15. Mei-Li Shen & Cheng-Feng Lee & Hsiou-Hsiang Liu & Po-Yin Chang & Cheng-Hong Yang, 2021. "An Effective Hybrid Approach for Forecasting Currency Exchange Rates," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
    16. Bahman Najafi & Sina Faizollahzadeh Ardabili & Amir Mosavi & Shahaboddin Shamshirband & Timon Rabczuk, 2018. "An Intelligent Artificial Neural Network-Response Surface Methodology Method for Accessing the Optimum Biodiesel and Diesel Fuel Blending Conditions in a Diesel Engine from the Viewpoint of Exergy and," Energies, MDPI, vol. 11(4), pages 1-18, April.
    17. Wang, Mengyao & Pan, Qiuhui & He, Mingfeng, 2020. "The effect of individual attitude on cooperation in social dilemma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    18. Gualtieri, Giovanni, 2019. "A comprehensive review on wind resource extrapolation models applied in wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 215-233.
    19. Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
    20. Wang, Ning-Ning & Qiu, Shui-Han & Zhong, Xiao Wen & Di, Zeng-Ru, 2023. "Epidemic thresholds identification of susceptible-infected-recovered model based on the Eigen Microstate," Applied Mathematics and Computation, Elsevier, vol. 449(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:890-:d:366145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.