IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v291y2021i2p471-481.html
   My bibliography  Save this article

Attacker–defender model against quantal response adversaries for cyber security in logistics management: An introductory study

Author

Listed:
  • Cheung, Kam-Fung
  • Bell, Michael G.H.

Abstract

Interest in cyber security in logistics and supply chain management has grown, but this has not been matched by academic research. Increasingly, the logistics industry is implementing the Internet-of-Things (IoT), namely sensors and actuators, to collect data, process orders and deliver materials and/or products. This automation reduces human errors in processing orders and enhances the efficiency of order deliveries. However, this can be interrupted by attacks from cyberspace, especially from the Internet. In this paper, we propose a novel attacker–defender model against a quantal response (QR) adversary to protect critical assets by considering the defending budget and the asset dependency. Each asset in the solution is represented by its security level indicating its desirability for being protected. Due to the non-convexity of our model, we propose a Method of Successive Average heuristic with randomised initial conditions (MSAR) to obtain a promising solution.

Suggested Citation

  • Cheung, Kam-Fung & Bell, Michael G.H., 2021. "Attacker–defender model against quantal response adversaries for cyber security in logistics management: An introductory study," European Journal of Operational Research, Elsevier, vol. 291(2), pages 471-481.
  • Handle: RePEc:eee:ejores:v:291:y:2021:i:2:p:471-481
    DOI: 10.1016/j.ejor.2019.10.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719308549
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.10.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Warren B. Powell & Yosef Sheffi, 1982. "The Convergence of Equilibrium Algorithms with Predetermined Step Sizes," Transportation Science, INFORMS, vol. 16(1), pages 45-55, February.
    2. Acemoglu, Daron & Malekian, Azarakhsh & Ozdaglar, Asu, 2016. "Network security and contagion," Journal of Economic Theory, Elsevier, vol. 166(C), pages 536-585.
    3. Bell, Michael G. H., 2000. "A game theory approach to measuring the performance reliability of transport networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(6), pages 533-545, August.
    4. Yuan, Wei & Zhao, Long & Zeng, Bo, 2014. "Optimal power grid protection through a defender–attacker–defender model," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 83-89.
    5. William Ho & Tian Zheng & Hakan Yildiz & Srinivas Talluri, 2015. "Supply chain risk management: a literature review," International Journal of Production Research, Taylor & Francis Journals, vol. 53(16), pages 5031-5069, August.
    6. Ouyang, Min, 2017. "A mathematical framework to optimize resilience of interdependent critical infrastructure systems under spatially localized attacks," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1072-1084.
    7. Du, Jie & Wong, S.C. & Shu, Chi-Wang & Xiong, Tao & Zhang, Mengping & Choi, Keechoo, 2013. "Revisiting Jiang’s dynamic continuum model for urban cities," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 96-119.
    8. McKelvey Richard D. & Palfrey Thomas R., 1995. "Quantal Response Equilibria for Normal Form Games," Games and Economic Behavior, Elsevier, vol. 10(1), pages 6-38, July.
    9. Mohammad Daneshvar Kakhki & Vidyaranya B. Gargeya, 2019. "Information systems for supply chain management: a systematic literature analysis," International Journal of Production Research, Taylor & Francis Journals, vol. 57(15-16), pages 5318-5339, August.
    10. Henry Liu & Xiaozheng He & Bingsheng He, 2009. "Method of Successive Weighted Averages (MSWA) and Self-Regulated Averaging Schemes for Solving Stochastic User Equilibrium Problem," Networks and Spatial Economics, Springer, vol. 9(4), pages 485-503, December.
    11. Gunasekaran, A. & Ngai, E. W. T., 2004. "Information systems in supply chain integration and management," European Journal of Operational Research, Elsevier, vol. 159(2), pages 269-295, December.
    12. Xiang Li, 2014. "Operations Management of Logistics and Supply Chain: Issues and Directions," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-7, June.
    13. Gerald Brown & Matthew Carlyle & Javier Salmerón & Kevin Wood, 2006. "Defending Critical Infrastructure," Interfaces, INFORMS, vol. 36(6), pages 530-544, December.
    14. Maher, Mike, 1998. "Algorithms for logit-based stochastic user equilibrium assignment," Transportation Research Part B: Methodological, Elsevier, vol. 32(8), pages 539-549, November.
    15. Jacob K. Goeree & Charles A. Holt & Thomas R. Palfrey, 2016. "Quantal Response Equilibrium:A Stochastic Theory of Games," Economics Books, Princeton University Press, edition 1, number 10743.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charles A. Holt & Ricky Sahu & Angela M. Smith, 2022. "An experimental analysis of risk effects in attacker‐defender games," Southern Economic Journal, John Wiley & Sons, vol. 89(1), pages 185-215, July.
    2. Zhang, Xiaoyu & Xu, Maochao & Su, Jianxi & Zhao, Peng, 2023. "Structural models for fog computing based internet of things architectures with insurance and risk management applications," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1273-1291.
    3. Schlicher, Loe & Lurkin, Virginie, 2024. "Fighting pickpocketing using a choice-based resource allocation model," European Journal of Operational Research, Elsevier, vol. 315(2), pages 580-595.
    4. Welburn, Jonathan & Grana, Justin & Schwindt, Karen, 2023. "Cyber deterrence with imperfect attribution and unverifiable signaling," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1399-1416.
    5. Dacorogna, Michel & Debbabi, Nehla & Kratz, Marie, 2023. "Building up cyber resilience by better grasping cyber risk via a new algorithm for modelling heavy-tailed data," European Journal of Operational Research, Elsevier, vol. 311(2), pages 708-729.
    6. Li, Qing & Li, Mingchu & Zhang, Runfa & Gan, Jianyuan, 2021. "A stochastic bilevel model for facility location-protection problem with the most likely interdiction strategy," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Li, Qing & Li, Mingchu & Gong, Zhongqiang & Tian, Yuan & Zhang, Runfa, 2022. "Locating and protecting interdependent facilities to hedge against multiple non-cooperative limited choice attackers," Reliability Engineering and System Safety, Elsevier, vol. 223(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Honggang Zhang & Zhiyuan Liu & Yicheng Zhang & Weijie Chen & Chenyang Zhang, 2024. "A Distributed Computing Method Integrating Improved Gradient Projection for Solving Stochastic Traffic Equilibrium Problem," Networks and Spatial Economics, Springer, vol. 24(2), pages 361-381, June.
    2. Richard Mounce & Malachy Carey, 2015. "On the Convergence of the Method of Successive Averages for Calculating Equilibrium in Traffic Networks," Transportation Science, INFORMS, vol. 49(3), pages 535-542, August.
    3. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun, 2014. "A bi-objective turning restriction design problem in urban road networks," European Journal of Operational Research, Elsevier, vol. 237(2), pages 426-439.
    4. Ghorbani-Renani, Nafiseh & González, Andrés D. & Barker, Kash & Morshedlou, Nazanin, 2020. "Protection-interdiction-restoration: Tri-level optimization for enhancing interdependent network resilience," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    5. Daniel Woods & Mustafa Abdallah & Saurabh Bagchi & Shreyas Sundaram & Timothy Cason, 2022. "Network defense and behavioral biases: an experimental study," Experimental Economics, Springer;Economic Science Association, vol. 25(1), pages 254-286, February.
    6. Alan Kirman & François Laisney & Paul Pezanis-Christou, 2023. "Relaxing the symmetry assumption in participation games: a specification test for cluster-heterogeneity," Experimental Economics, Springer;Economic Science Association, vol. 26(4), pages 850-878, September.
    7. Ahipaşaoğlu, Selin Damla & Meskarian, Rudabeh & Magnanti, Thomas L. & Natarajan, Karthik, 2015. "Beyond normality: A cross moment-stochastic user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 333-354.
    8. Goknur Arzu Akyuz & Guner Gursoy, 2020. "Strategic management perspectives on supply chain," Management Review Quarterly, Springer, vol. 70(2), pages 213-241, May.
    9. Bravard, Christophe & Charroin, Liza & Touati, Corinne, 2017. "Optimal design and defense of networks under link attacks," Journal of Mathematical Economics, Elsevier, vol. 68(C), pages 62-79.
    10. Li, Yapeng & Qiao, Shun & Deng, Ye & Wu, Jun, 2019. "Stackelberg game in critical infrastructures from a network science perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 705-714.
    11. Marco Angrisani & Antonio Guarino & Philippe Jehiel & Toru Kitagawa, 2021. "Information Redundancy Neglect versus Overconfidence: A Social Learning Experiment," American Economic Journal: Microeconomics, American Economic Association, vol. 13(3), pages 163-197, August.
    12. Dagsvik, John K., 2020. "Equilibria in Logit Models of Social Interaction and Quantal Response Equilibrium," HERO Online Working Paper Series 2020:5, University of Oslo, Health Economics Research Programme, revised 09 Mar 2023.
    13. Ampol Karoonsoontawong & Dung-Ying Lin, 2015. "Combined Gravity Model Trip Distribution and Paired Combinatorial Logit Stochastic User Equilibrium Problem," Networks and Spatial Economics, Springer, vol. 15(4), pages 1011-1048, December.
    14. Funai, Naoki, 2022. "Reinforcement learning with foregone payoff information in normal form games," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 638-660.
    15. Henn, Nicolas & Lohwasser, Todor S., 2020. "The advances of community cloud computing in the business-to-business buying process," Discussion Papers of the Institute for Organisational Economics 6/2020, University of Münster, Institute for Organisational Economics.
    16. Ma, Jie & Meng, Qiang & Cheng, Lin & Liu, Zhiyuan, 2022. "General stochastic ridesharing user equilibrium problem with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 162-194.
    17. Tsakas, Nikolas & Xefteris, Dimitrios, 2021. "Stress-testing the runoff rule in the laboratory," Games and Economic Behavior, Elsevier, vol. 128(C), pages 18-38.
    18. S. Cerreia-Vioglio & F. Maccheroni & M. Marinacci & A. Rustichini, 2017. "Multinomial logit processes and preference discovery: inside and outside the black box," Working Papers 615, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    19. Wagner, Alexander K. & Granic, Dura-Georg, 2017. "Tie-Breaking Power in Committees," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168187, Verein für Socialpolitik / German Economic Association.
    20. Paolo Delle Site, 2017. "On the Equivalence Between SUE and Fixed-Point States of Day-to-Day Assignment Processes with Serially-Correlated Route Choice," Networks and Spatial Economics, Springer, vol. 17(3), pages 935-962, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:291:y:2021:i:2:p:471-481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.