IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v33y2022i3d10.1007_s10845-020-01652-4.html
   My bibliography  Save this article

An effective adaptive adjustment method for service composition exception handling in cloud manufacturing

Author

Listed:
  • Yankai Wang

    (Chongqing University)

  • Shilong Wang

    (Chongqing University)

  • Bo Yang

    (Chongqing University)

  • Bo Gao

    (Chongqing University)

  • Sibao Wang

    (Chongqing University)

Abstract

With the increasing market features of globalization, service and customization, the way manufacturers conduct manufacturing business is changing. Under this background, Cloud Manufacturing (CMfg) emerges as a new networked manufacturing model. However, CMfg is immature in many aspects, especially in exception handling of service composition execution. Due to the complexity of the enterprise manufacturing process, there are a large number of unpredictable abnormal events in the dynamic open cloud manufacturing environment (such as user demand change, machine failure, etc.), so in order to ensure the smooth implementation of the service combination, it is indispensable to establish an effective service exception handling mechanism in CMfg. Moreover, when an exception occurs, in order to ensure the smooth execution of the downstream services after the exception point, the exception handling must satisfy the strict time constraints. To realize the exception-handing of service-composition with the strict deadline or strict time constraints, this paper proposes a service-composition exception adaptive adjustment model, considering the influences of the logistics transferring time and cost. And the occupied time of the cloud services and the valid replacement time range of the exception service are considered as the constraints in this model. In addition, the processing quality, the cost, and the quality of service are set as the optimal objectives. On the above basis, a service-composition exception handling adaptive adjustment (SCEHAA) algorithm based on the improved ant colony optimization algorithm (ACO) is proposed and applied to address the above model. Finally, to validate the performance of SCEHAA, a case study and the comparison experiment between SCEHAA and other algorithms (Particle Swarm Optimization and Artificial Bee Colony) are performed. The results show that the SCEHAA algorithm can perform the adaptive adjustment of the service-composition with strict time limit effectively, through the adaptive service execution path reconfiguration and has fast convergence effects.

Suggested Citation

  • Yankai Wang & Shilong Wang & Bo Yang & Bo Gao & Sibao Wang, 2022. "An effective adaptive adjustment method for service composition exception handling in cloud manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 735-751, March.
  • Handle: RePEc:spr:joinma:v:33:y:2022:i:3:d:10.1007_s10845-020-01652-4
    DOI: 10.1007/s10845-020-01652-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-020-01652-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-020-01652-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. W. Qin & J. Zhang & D. Song, 2018. "An improved ant colony algorithm for dynamic hybrid flow shop scheduling with uncertain processing time," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 891-904, April.
    2. Li-Nan Zhu & Peng-Hang Li & Xiao-Long Zhou, 2019. "IHDETBO: A Novel Optimization Method of Multi-Batch Subtasks Parallel-Hybrid Execution Cloud Service Composition for Cloud Manufacturing," Complexity, Hindawi, vol. 2019, pages 1-21, February.
    3. Hong Jin & Xifan Yao & Yong Chen, 2017. "Correlation-aware QoS modeling and manufacturing cloud service composition," Journal of Intelligent Manufacturing, Springer, vol. 28(8), pages 1947-1960, December.
    4. Yang-Kuei Lin & Chin Soon Chong, 2017. "Fast GA-based project scheduling for computing resources allocation in a cloud manufacturing system," Journal of Intelligent Manufacturing, Springer, vol. 28(5), pages 1189-1201, June.
    5. Yingfeng Zhang & Geng Zhang & Yang Liu & Di Hu, 2017. "Research on services encapsulation and virtualization access model of machine for cloud manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 28(5), pages 1109-1123, June.
    6. Tao, Fei & Zhao, Dongming & Yefa, Hu & Zhou, Zude, 2010. "Correlation-aware resource service composition and optimal-selection in manufacturing grid," European Journal of Operational Research, Elsevier, vol. 201(1), pages 129-143, February.
    7. Yabo Luo, 2017. "Nested optimization method combining complex method and ant colony optimization to solve JSSP with complex associated processes," Journal of Intelligent Manufacturing, Springer, vol. 28(8), pages 1801-1815, December.
    8. Chunyang Yu & Wei Zhang & Xun Xu & Yangjian Ji & Shiqiang Yu, 2018. "Data mining based multi-level aggregate service planning for cloud manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 29(6), pages 1351-1361, August.
    9. Malik Khalfallah & Nicolas Figay & Catarina Ferreira Da Silva & Parisa Ghodous, 2016. "A cloud-based platform to ensure interoperability in aerospace industry," Journal of Intelligent Manufacturing, Springer, vol. 27(1), pages 119-129, February.
    10. Octavian Morariu & Cristina Morariu & Theodor Borangiu, 2016. "Shop-floor resource virtualization layer with private cloud support," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 447-462, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhitao Xu & Adel Elomri & Roberto Baldacci & Laoucine Kerbache & Zhenyong Wu, 2024. "Frontiers and trends of supply chain optimization in the age of industry 4.0: an operations research perspective," Annals of Operations Research, Springer, vol. 338(2), pages 1359-1401, July.
    2. Hongbin Wang & Yang Ding & Hanchuan Xu, 2024. "Particle swarm optimization service composition algorithm based on prior knowledge," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 35-53, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baodong Li & Yu Yang & Jiafu Su & Zhichao Liang & Sheng Wang, 2020. "Two-sided matching decision-making model with hesitant fuzzy preference information for configuring cloud manufacturing tasks and resources," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 2033-2047, December.
    2. Asma Talhi & Virginie Fortineau & Jean-Charles Huet & Samir Lamouri, 2019. "Ontology for cloud manufacturing based Product Lifecycle Management," Journal of Intelligent Manufacturing, Springer, vol. 30(5), pages 2171-2192, June.
    3. Tianyang Li & Ting He & Zhongjie Wang & Yufeng Zhang, 2020. "SDF-GA: a service domain feature-oriented approach for manufacturing cloud service composition," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 681-702, March.
    4. Haibo Yi, 2021. "A post-quantum secure communication system for cloud manufacturing safety," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 679-688, March.
    5. Hao Li & Shanghua Mi & Qifeng Li & Xiaoyu Wen & Dongping Qiao & Guofu Luo, 2020. "A scheduling optimization method for maintenance, repair and operations service resources of complex products," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1673-1691, October.
    6. Shuangyao Zhao & Qiang Zhang & Zhanglin Peng & Xiaonong Lu, 2020. "Personalized manufacturing service composition recommendation: combining combinatorial optimization and collaborative filtering," Journal of Combinatorial Optimization, Springer, vol. 40(3), pages 733-756, October.
    7. Yu Feng & Biqing Huang, 2020. "Cloud manufacturing service QoS prediction based on neighbourhood enhanced matrix factorization," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1649-1660, October.
    8. Wei He & Guozhu Jia & Hengshan Zong & Jili Kong, 2019. "Multi-Objective Service Selection and Scheduling with Linguistic Preference in Cloud Manufacturing," Sustainability, MDPI, vol. 11(9), pages 1-15, May.
    9. Shuangyao Zhao & Qiang Zhang & Zhanglin Peng & Xiaonong Lu, 0. "Personalized manufacturing service composition recommendation: combining combinatorial optimization and collaborative filtering," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-24.
    10. Shuai Zhang & Yangbing Xu & Wenyu Zhang & Dejian Yu, 2019. "A new fuzzy QoS-aware manufacture service composition method using extended flower pollination algorithm," Journal of Intelligent Manufacturing, Springer, vol. 30(5), pages 2069-2083, June.
    11. Delin Zeng & Jingbo Hu & Taohua Ouyang, 2017. "Managing Innovation Paradox in the Sustainable Innovation Ecosystem: A Case Study of Ambidextrous Capability in a Focal Firm," Sustainability, MDPI, vol. 9(11), pages 1-15, November.
    12. Konstantinos S. Boulas & Georgios D. Dounias & Chrissoleon T. Papadopoulos, 2023. "A hybrid evolutionary algorithm approach for estimating the throughput of short reliable approximately balanced production lines," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 823-852, February.
    13. Tomoko Sakiyama & Ikuo Arizono, 2018. "Coordination of Pheromone Deposition Might Solve Time-Constrained Travelling Salesman Problem," Complexity, Hindawi, vol. 2018, pages 1-5, December.
    14. Wattana Viriyasitavat & Li Xu & Zhuming Bi & Assadaporn Sapsomboon, 2020. "Blockchain-based business process management (BPM) framework for service composition in industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1737-1748, October.
    15. Mingxing Li & Ray Y. Zhong & Ting Qu & George Q. Huang, 2022. "Spatial–temporal out-of-order execution for advanced planning and scheduling in cyber-physical factories," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1355-1372, June.
    16. Haghnegahdar, Lida & Chen, Yu & Wang, Yong, 2022. "Enhancing dynamic energy network management using a multiagent cloud-fog structure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    17. Wenxiang Xu & Shunsheng Guo, 2019. "A Multi-Objective and Multi-Dimensional Optimization Scheduling Method Using a Hybrid Evolutionary Algorithms with a Sectional Encoding Mode," Sustainability, MDPI, vol. 11(5), pages 1-24, March.
    18. Wang Shijie & Zhang Yingfeng, 2021. "A credit-based dynamical evaluation method for the smart configuration of manufacturing services under Industrial Internet of Things," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1091-1115, April.
    19. Di Liang & Jieyi Wang & Ran Bhamra & Liezhao Lu & Yuting Li, 2022. "A Multi-Service Composition Model for Tasks in Cloud Manufacturing Based on VS–ABC Algorithm," Mathematics, MDPI, vol. 10(21), pages 1-24, October.
    20. Yingxin Ye & Tianliang Hu & Yan Yang & Wendan Zhu & Chengrui Zhang, 2020. "A knowledge based intelligent process planning method for controller of computer numerical control machine tools," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1751-1767, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:33:y:2022:i:3:d:10.1007_s10845-020-01652-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.