IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v312y2022i1d10.1007_s10479-018-2842-y.html
   My bibliography  Save this article

Data envelopment analysis based multi-objective optimization model for evaluation and selection of software components under optimal redundancy

Author

Listed:
  • Pankaj Gupta

    (University of Delhi)

  • Mukesh Kumar Mehlawat

    (University of Delhi)

  • Divya Mahajan

    (University of Delhi)

Abstract

Software developers face the challenge of developing in-time, low cost, high profit and high-quality software to meet competitive requirements and user demands. The software components for the same can be selected either from the available commercial-off-the-shelf repository or developed in-house. In this paper, we propose a data envelopment analysis (DEA) based nonlinear multi-objective optimization model for selecting software components in the presence of optimal redundancy to ensure software reliability. The proposed optimization model integrates both build and/or buy decisions for selection of components. We use DEA technique for evaluating the fitness of software components based upon multiple inputs and outputs provided by various members of the decision group. The overall efficiency score of each software component is obtained from the aggregated information. The proposed optimization model minimizes the total cost of software system and maximizes the total value of purchasing using constraints corresponding to compatibility of selected components, reliability, execution time, and delivery time of the software system. It also provides the information on the testing efforts needed to be performed on in-house developed components. A real-world case study of modular software development is discussed to illustrate the efficiency of the proposed optimization model. To the best of our knowledge, there exists no previous study on integrated optimization model for the software component selection problem involving build and/or buy decisions under optimal redundancy.

Suggested Citation

  • Pankaj Gupta & Mukesh Kumar Mehlawat & Divya Mahajan, 2022. "Data envelopment analysis based multi-objective optimization model for evaluation and selection of software components under optimal redundancy," Annals of Operations Research, Springer, vol. 312(1), pages 193-216, May.
  • Handle: RePEc:spr:annopr:v:312:y:2022:i:1:d:10.1007_s10479-018-2842-y
    DOI: 10.1007/s10479-018-2842-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-2842-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-2842-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    2. Jung, Ho-Won & Choi, Byoungju, 1999. "Optimization models for quality and cost of modular software systems," European Journal of Operational Research, Elsevier, vol. 112(3), pages 613-619, February.
    3. Babu Zachariah & R. N. Rattihalli, 2007. "A Multicriteria Optimization Model For Quality Of Modular Software Systems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 24(06), pages 797-811.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shilpi Verma & Mukesh Kumar Mehlawat & Divya Mahajan, 2022. "Software component evaluation and selection using TOPSIS and fuzzy interactive approach under multiple applications development," Annals of Operations Research, Springer, vol. 312(1), pages 441-471, May.
    2. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499.
    3. repec:lan:wpaper:1115 is not listed on IDEAS
    4. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    5. Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & de Pinho Matos, Giordano Bruno Braz, 2015. "Statistical evaluation of Data Envelopment Analysis versus COLS Cobb–Douglas benchmarking models for the 2011 Brazilian tariff revision," Socio-Economic Planning Sciences, Elsevier, vol. 49(C), pages 47-60.
    6. Kristiaan Kerstens & Ignace Van de Woestyne, 2018. "Enumeration algorithms for FDH directional distance functions under different returns to scale assumptions," Annals of Operations Research, Springer, vol. 271(2), pages 1067-1078, December.
    7. Ahmad, Usman, 2011. "Financial Reforms and Banking Efficiency: Case of Pakistan," MPRA Paper 34220, University Library of Munich, Germany.
    8. Bowlin, W. F., 1995. "A characterization of the financial condition of the United States' aerospace-defense industrial base," Omega, Elsevier, vol. 23(5), pages 539-555, October.
    9. Büschken, Joachim, 2009. "When does data envelopment analysis outperform a naïve efficiency measurement model?," European Journal of Operational Research, Elsevier, vol. 192(2), pages 647-657, January.
    10. António Afonso & Ana Patricia Montes & José M. Domínguez, 2024. "Measuring Tax Burden Efficiency in OECD Countries: An International Comparison," CESifo Working Paper Series 11333, CESifo.
    11. Helmi Hammami & Thanh Ngo & David Tripe & Dinh-Tri Vo, 2022. "Ranking with a Euclidean common set of weights in data envelopment analysis: with application to the Eurozone banking sector," Annals of Operations Research, Springer, vol. 311(2), pages 675-694, April.
    12. Khanal, Aditya & Koirala, Krishna & Regmi, Madhav, 2016. "Do Financial Constraints Affect Production Efficiency in Drought Prone Areas? A Case from Indonesian Rice Growers," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230087, Southern Agricultural Economics Association.
    13. Jahangoshai Rezaee, Mustafa & Jozmaleki, Mehrdad & Valipour, Mahsa, 2018. "Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 78-93.
    14. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    15. Bogetoft, Peter & Nielsen, Kurt, 2003. "Yardstick Based Procurement Design In Natural Resource Management," 2003 Annual Meeting, August 16-22, 2003, Durban, South Africa 25910, International Association of Agricultural Economists.
    16. Singer, Marcos & Donoso, Patricio & Poblete, Francisco, 2002. "Semi-autonomous planning using linear programming in the Chilean General Treasury," European Journal of Operational Research, Elsevier, vol. 140(2), pages 517-529, July.
    17. Chai, Naijie & Zhou, Wenliang & Hu, Xinlei, 2022. "Safety evaluation of urban rail transit operation considering uncertainty and risk preference: A case study in China," Transport Policy, Elsevier, vol. 125(C), pages 267-288.
    18. Fang, Lei, 2022. "Measuring and decomposing group performance under centralized management," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1006-1013.
    19. Chih-HAI YANG & Leah WU & Hui-Lin LIN, 2010. "Analysis of total-factor cultivated land efficiency in China's agriculture," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 56(5), pages 231-242.
    20. Jinyi Hu, 2023. "Linguistic Multiple-Attribute Decision Making Based on Regret Theory and Minimax-DEA," Mathematics, MDPI, vol. 11(20), pages 1-14, October.
    21. António Afonso & José Alves, 2023. "Are fiscal consolidation episodes helpful for public sector efficiency?," Applied Economics, Taylor & Francis Journals, vol. 55(31), pages 3547-3560, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:312:y:2022:i:1:d:10.1007_s10479-018-2842-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.