IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v312y2022i1d10.1007_s10479-018-3022-9.html
   My bibliography  Save this article

Software component evaluation and selection using TOPSIS and fuzzy interactive approach under multiple applications development

Author

Listed:
  • Shilpi Verma

    (University of Delhi)

  • Mukesh Kumar Mehlawat

    (University of Delhi)

  • Divya Mahajan

    (University of Delhi)

Abstract

In this paper, a two phase approach is proposed for decision-making situation that involves optimal software component evaluation and selection for designing component-based modular software system with multiple applications. In the first phase, components are evaluated using technique for order preference by similarity to ideal solution. In the second phase, a non-linear multi-objective optimization model is developed that facilitates the decision whether “to buy commercial-off-the-shelf components” or “to build in-house components” so that the total score of alternative components is maximized while the overall cost and delivery time of the system are minimized. Many critical parameters such as reliability of various applications, reusability and compatibility of the software components are considered simultaneously in the proposed optimization model. To determine a preferred compromise solution for the multi-objective optimization problem, a fuzzy interactive approach is used. Numerical illustrations based on a small-scale case study are presented to demonstrate usefulness of the proposed optimization model for optimal “build or buy” decisions in real-world applications.

Suggested Citation

  • Shilpi Verma & Mukesh Kumar Mehlawat & Divya Mahajan, 2022. "Software component evaluation and selection using TOPSIS and fuzzy interactive approach under multiple applications development," Annals of Operations Research, Springer, vol. 312(1), pages 441-471, May.
  • Handle: RePEc:spr:annopr:v:312:y:2022:i:1:d:10.1007_s10479-018-3022-9
    DOI: 10.1007/s10479-018-3022-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-3022-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-3022-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Tang, J.F. & Mu, L.F. & Kwong, C.K. & Luo, X.G., 2011. "An optimization model for software component selection under multiple applications development," European Journal of Operational Research, Elsevier, vol. 212(2), pages 301-311, July.
    3. Pankaj Gupta & Shilpi Verma & Mukesh Kumar Mehlawat, 2012. "Fuzzy COTS Selection for Modular Software Systems Based on Cohesion and Coupling under Multiple Applications Environment," International Journal of Applied Evolutionary Computation (IJAEC), IGI Global, vol. 3(4), pages 1-18, October.
    4. Jung, Ho-Won & Choi, Byoungju, 1999. "Optimization models for quality and cost of modular software systems," European Journal of Operational Research, Elsevier, vol. 112(3), pages 613-619, February.
    5. Babu Zachariah & R. N. Rattihalli, 2007. "A Multicriteria Optimization Model For Quality Of Modular Software Systems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 24(06), pages 797-811.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pankaj Gupta & Mukesh Kumar Mehlawat & Divya Mahajan, 2022. "Data envelopment analysis based multi-objective optimization model for evaluation and selection of software components under optimal redundancy," Annals of Operations Research, Springer, vol. 312(1), pages 193-216, May.
    2. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    3. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    4. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    5. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    6. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    7. Hongyi Sun & Bingqian Zhang & Wenbin Ni, 2022. "A Hybrid Model Based on SEM and Fuzzy TOPSIS for Supplier Selection," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    8. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    9. Sakawa, Masatoshi & Kato, Kosuke, 1998. "An interactive fuzzy satisficing method for structured multiobjective linear fractional programs with fuzzy numbers," European Journal of Operational Research, Elsevier, vol. 107(3), pages 575-589, June.
    10. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    11. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    12. Svajone Bekesiene & Serhii Mashchenko, 2023. "On Nash Equilibria in a Finite Game for Fuzzy Sets of Strategies," Mathematics, MDPI, vol. 11(22), pages 1-12, November.
    13. Qian-Yun Tan & Cui-Ping Wei & Qi Liu & Xiang-Qian Feng, 2016. "The Hesitant Fuzzy Linguistic TOPSIS Method Based on Novel Information Measures," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-22, October.
    14. Hsiao, Tzy-yih, 2006. "Establish standards of standard costing with the application of convergent gray zone test," European Journal of Operational Research, Elsevier, vol. 168(2), pages 593-611, January.
    15. Zola, Fernanda Cavicchioli & Colmenero, João Carlos & Aragão, Franciely Velozo & Rodrigues, Thaisa & Junior, Aldo Braghini, 2020. "Multicriterial model for selecting a charcoal kiln," Energy, Elsevier, vol. 190(C).
    16. Adel Hatami-Marbini & Madjid Tavana & Kobra Gholami & Zahra Ghelej Beigi, 2015. "A Bounded Data Envelopment Analysis Model in a Fuzzy Environment with an Application to Safety in the Semiconductor Industry," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 679-701, February.
    17. Manuel Casal-Guisande & Alberto Comesaña-Campos & Alejandro Pereira & José-Benito Bouza-Rodríguez & Jorge Cerqueiro-Pequeño, 2022. "A Decision-Making Methodology Based on Expert Systems Applied to Machining Tools Condition Monitoring," Mathematics, MDPI, vol. 10(3), pages 1-30, February.
    18. James Liou & Mei-Ling Chuang, 2010. "Evaluating corporate image and reputation using fuzzy MCDM approach in airline market," Quality & Quantity: International Journal of Methodology, Springer, vol. 44(6), pages 1079-1091, October.
    19. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    20. Panagiotis Christias & Ioannis N. Daliakopoulos & Thrassyvoulos Manios & Mariana Mocanu, 2020. "Comparison of Three Computational Approaches for Tree Crop Irrigation Decision Support," Mathematics, MDPI, vol. 8(5), pages 1-26, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:312:y:2022:i:1:d:10.1007_s10479-018-3022-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.