Linearizable special cases of the QAP
Author
Abstract
Suggested Citation
DOI: 10.1007/s10878-014-9821-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Santosh N. Kabadi & Abraham P. Punnen, 2011. "An O ( n 4 ) Algorithm for the QAP Linearization Problem," Mathematics of Operations Research, INFORMS, vol. 36(4), pages 754-761, November.
- Berenguer, Xavier, 1979. "A characterization of linear admissible transformations for the m-travelling salesmen problem," European Journal of Operational Research, Elsevier, vol. 3(3), pages 232-238, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- de Meijer, Frank, 2023. "Integrality and cutting planes in semidefinite programming approaches for combinatorial optimization," Other publications TiSEM b1f1088c-95fe-4b8a-9e15-c, Tilburg University, School of Economics and Management.
- Hao Hu & Renata Sotirov, 2018. "Special cases of the quadratic shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 35(3), pages 754-777, April.
- Ante Ćustić & Abraham P. Punnen, 2018. "A characterization of linearizable instances of the quadratic minimum spanning tree problem," Journal of Combinatorial Optimization, Springer, vol. 35(2), pages 436-453, February.
- Hao Hu & Renata Sotirov, 2021. "The linearization problem of a binary quadratic problem and its applications," Annals of Operations Research, Springer, vol. 307(1), pages 229-249, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hao Hu & Renata Sotirov, 2021. "The linearization problem of a binary quadratic problem and its applications," Annals of Operations Research, Springer, vol. 307(1), pages 229-249, December.
- Frank Meijer & Renata Sotirov, 2020. "The quadratic cycle cover problem: special cases and efficient bounds," Journal of Combinatorial Optimization, Springer, vol. 39(4), pages 1096-1128, May.
- Lucas A. Waddell & Jerry L. Phillips & Tianzhu Liu & Swarup Dhar, 2023. "An LP-based characterization of solvable QAP instances with chess-board and graded structures," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-23, July.
- Ante Ćustić & Abraham P. Punnen, 2018. "A characterization of linearizable instances of the quadratic minimum spanning tree problem," Journal of Combinatorial Optimization, Springer, vol. 35(2), pages 436-453, February.
More about this item
Keywords
Combinatorial optimization; Quadratic assignment problem; Linear assignment problem; Computational complexity;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:31:y:2016:i:3:d:10.1007_s10878-014-9821-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.