IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v189y2024ics1366554524002370.html
   My bibliography  Save this article

The k-th order mean-deviation model for route choice under uncertainty

Author

Listed:
  • Liu, Yong
  • Xiao, Feng
  • Shen, Minyu
  • Zhao, Lin
  • Li, Lu

Abstract

This study introduces the k-th order mean-deviation model for optimizing route choice within large, stochastic, and time-variant networks. This model addresses the limitations of the traditional mean-standard deviation approach by better handling extreme outcomes in travel times. It features an objective function called the “travel time budget”, which combines the average path travel time with a safety margin. This margin is defined by a trade-off coefficient and a selected deviation measure (total or semi) of the travel time. The model is divided into three variations: 1) The mean-total deviation (MTD) model for symmetric travel time distributions, 2) The mean-upper-semi-deviation (MUSD) model for asymmetric distributions prioritizing upper semi-deviations, suitable for risk-averse travelers, and 3) The mean-lower-semi-deviation (MLSD) model for asymmetric distributions focusing on lower semi-deviations, preferred by risk-prone individuals. We explore these models’ alignment with the stochastic dominance (SD) rule and develop a solution methodology based on SD principles. Numerical experiments in two real-world transportation networks demonstrate the models’ effectiveness and show how the choice of deviation affects route selection decisions.

Suggested Citation

  • Liu, Yong & Xiao, Feng & Shen, Minyu & Zhao, Lin & Li, Lu, 2024. "The k-th order mean-deviation model for route choice under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:transe:v:189:y:2024:i:c:s1366554524002370
    DOI: 10.1016/j.tre.2024.103646
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524002370
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103646?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pitu Mirchandani & Hossein Soroush, 1987. "Generalized Traffic Equilibrium with Probabilistic Travel Times and Perceptions," Transportation Science, INFORMS, vol. 21(3), pages 133-152, August.
    2. Wu, Xing & (Marco) Nie, Yu, 2011. "Modeling heterogeneous risk-taking behavior in route choice: A stochastic dominance approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 896-915, November.
    3. Whitmore, G A, 1970. "Third-Degree Stochastic Dominance," American Economic Review, American Economic Association, vol. 60(3), pages 457-459, June.
    4. Suvrajeet Sen & Rekha Pillai & Shirish Joshi & Ajay K. Rathi, 2001. "A Mean-Variance Model for Route Guidance in Advanced Traveler Information Systems," Transportation Science, INFORMS, vol. 35(1), pages 37-49, February.
    5. Lee, Jisun & Joung, Seulgi & Lee, Kyungsik, 2022. "A fully polynomial time approximation scheme for the probability maximizing shortest path problem," European Journal of Operational Research, Elsevier, vol. 300(1), pages 35-45.
    6. Shen, Liang & Shao, Hu & Wu, Ting & Fainman, Emily Zhu & Lam, William H.K., 2020. "Finding the reliable shortest path with correlated link travel times in signalized traffic networks under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    7. Lo, Hong K. & Luo, X.W. & Siu, Barbara W.Y., 2006. "Degradable transport network: Travel time budget of travelers with heterogeneous risk aversion," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 792-806, November.
    8. Srinivasan, Karthik K. & Prakash, A.A. & Seshadri, Ravi, 2014. "Finding most reliable paths on networks with correlated and shifted log–normal travel times," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 110-128.
    9. Thanasis Lianeas & Evdokia Nikolova & Nicolas E. Stier-Moses, 2019. "Risk-Averse Selfish Routing," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 38-57, February.
    10. Haim Levy, 1992. "Stochastic Dominance and Expected Utility: Survey and Analysis," Management Science, INFORMS, vol. 38(4), pages 555-593, April.
    11. E. Nikolova & N. E. Stier-Moses, 2014. "A Mean-Risk Model for the Traffic Assignment Problem with Stochastic Travel Times," Operations Research, INFORMS, vol. 62(2), pages 366-382, April.
    12. Hall, Randolph W., 1983. "Travel outcome and performance: The effect of uncertainty on accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 17(4), pages 275-290, August.
    13. G. Hanoch & H. Levy, 1969. "The Efficiency Analysis of Choices Involving Risk," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 36(3), pages 335-346.
    14. H. Frank, 1969. "Shortest Paths in Probabilistic Graphs," Operations Research, INFORMS, vol. 17(4), pages 583-599, August.
    15. Rothschild, Michael & Stiglitz, Joseph E., 1970. "Increasing risk: I. A definition," Journal of Economic Theory, Elsevier, vol. 2(3), pages 225-243, September.
    16. Hao Hu & Renata Sotirov, 2018. "Special cases of the quadratic shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 35(3), pages 754-777, April.
    17. Zhang, Yuli & Max Shen, Zuo-Jun & Song, Shiji, 2017. "Lagrangian relaxation for the reliable shortest path problem with correlated link travel times," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 501-521.
    18. Arun Prakash, A., 2020. "Algorithms for most reliable routes on stochastic and time-dependent networks," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 202-220.
    19. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    20. Bi Chen & William Lam & Agachai Sumalee & Qingquan Li & Hu Shao & Zhixiang Fang, 2013. "Finding Reliable Shortest Paths in Road Networks Under Uncertainty," Networks and Spatial Economics, Springer, vol. 13(2), pages 123-148, June.
    21. Wu, Xing, 2015. "Study on mean-standard deviation shortest path problem in stochastic and time-dependent networks: A stochastic dominance based approach," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 275-290.
    22. Ogryczak, Wlodzimierz & Ruszczynski, Andrzej, 1999. "From stochastic dominance to mean-risk models: Semideviations as risk measures," European Journal of Operational Research, Elsevier, vol. 116(1), pages 33-50, July.
    23. Shahabi, Mehrdad & Unnikrishnan, Avinash & Boyles, Stephen D., 2013. "An outer approximation algorithm for the robust shortest path problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 58(C), pages 52-66.
    24. Peter C. Fishburn, 1980. "Stochastic Dominance and Moments of Distributions," Mathematics of Operations Research, INFORMS, vol. 5(1), pages 94-100, February.
    25. Hadar, Josef & Russell, William R, 1969. "Rules for Ordering Uncertain Prospects," American Economic Review, American Economic Association, vol. 59(1), pages 25-34, March.
    26. Roberto Cominetti & Alfredo Torrico, 2016. "Additive Consistency of Risk Measures and Its Application to Risk-Averse Routing in Networks," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1510-1521, November.
    27. Guo, Xu & Wong, Wing-Keung, 2016. "Multivariate Stochastic Dominance for Risk Averters and Risk Seekers," MPRA Paper 70637, University Library of Munich, Germany.
    28. Xing, Tao & Zhou, Xuesong, 2011. "Finding the most reliable path with and without link travel time correlation: A Lagrangian substitution based approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1660-1679.
    29. Rostami, Borzou & Chassein, André & Hopf, Michael & Frey, Davide & Buchheim, Christoph & Malucelli, Federico & Goerigk, Marc, 2018. "The quadratic shortest path problem: complexity, approximability, and solution methods," European Journal of Operational Research, Elsevier, vol. 268(2), pages 473-485.
    30. Chen, Anthony & Zhou, Zhong & Lam, William H.K., 2011. "Modeling stochastic perception error in the mean-excess traffic equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1619-1640.
    31. Yu Marco Nie & Xing Wu, 2009. "Reliable a Priori Shortest Path Problem with Limited Spatial and Temporal Dependencies," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 169-195, Springer.
    32. Nie, Yu (Marco) & Wu, Xing, 2009. "Shortest path problem considering on-time arrival probability," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 597-613, July.
    33. Zhang, Yufeng & Khani, Alireza, 2019. "An algorithm for reliable shortest path problem with travel time correlations," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 92-113.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    2. Zhang, Yufeng & Khani, Alireza, 2019. "An algorithm for reliable shortest path problem with travel time correlations," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 92-113.
    3. Zhang, Yuli & Max Shen, Zuo-Jun & Song, Shiji, 2017. "Lagrangian relaxation for the reliable shortest path problem with correlated link travel times," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 501-521.
    4. Shen, Liang & Shao, Hu & Wu, Ting & Fainman, Emily Zhu & Lam, William H.K., 2020. "Finding the reliable shortest path with correlated link travel times in signalized traffic networks under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    5. Tan, Zhijia & Yang, Hai & Guo, Renyong, 2014. "Pareto efficiency of reliability-based traffic equilibria and risk-taking behavior of travelers," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 16-31.
    6. Wu, Xing & (Marco) Nie, Yu, 2011. "Modeling heterogeneous risk-taking behavior in route choice: A stochastic dominance approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 896-915, November.
    7. Teng, Wenxin & Chen, Bi Yu, 2024. "Reliable lifelong planning A*: Technique for re-optimizing reliable shortest paths when travel time distribution updating," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    8. Nie, Yu (Marco) & Wu, Xing & Dillenburg, John F. & Nelson, Peter C., 2012. "Reliable route guidance: A case study from Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(2), pages 403-419.
    9. Wu, Xing, 2015. "Study on mean-standard deviation shortest path problem in stochastic and time-dependent networks: A stochastic dominance based approach," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 275-290.
    10. Prakash, A. Arun & Seshadri, Ravi & Srinivasan, Karthik K., 2018. "A consistent reliability-based user-equilibrium problem with risk-averse users and endogenous travel time correlations: Formulation and solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 171-198.
    11. Yu Nie & Xing Wu & Tito Homem-de-Mello, 2012. "Optimal Path Problems with Second-Order Stochastic Dominance Constraints," Networks and Spatial Economics, Springer, vol. 12(4), pages 561-587, December.
    12. Chen, Bi Yu & Li, Qingquan & Lam, William H.K., 2016. "Finding the k reliable shortest paths under travel time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 189-203.
    13. Nowak, Maciej, 2004. "Preference and veto thresholds in multicriteria analysis based on stochastic dominance," European Journal of Operational Research, Elsevier, vol. 158(2), pages 339-350, October.
    14. Xu, Xiangdong & Chen, Anthony & Cheng, Lin & Yang, Chao, 2017. "A link-based mean-excess traffic equilibrium model under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 53-75.
    15. Francesco Cesarone & Raffaello Cesetti & Giuseppe Orlando & Manuel Luis Martino & Jacopo Maria Ricci, 2022. "Comparing SSD-Efficient Portfolios with a Skewed Reference Distribution," Mathematics, MDPI, vol. 11(1), pages 1-20, December.
    16. Zhang, Yu & Tang, Jiafu, 2018. "Itinerary planning with time budget for risk-averse travelers," European Journal of Operational Research, Elsevier, vol. 267(1), pages 288-303.
    17. Levy, Moshe, 2009. "Almost Stochastic Dominance and stocks for the long run," European Journal of Operational Research, Elsevier, vol. 194(1), pages 250-257, April.
    18. Chan, Raymond H. & Chow, Sheung-Chi & Guo, Xu & Wong, Wing-Keung, 2022. "Central moments, stochastic dominance, moment rule, and diversification with an application," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    19. Maocan Song & Lin Cheng & Huimin Ge & Chao Sun & Ruochen Wang, 2024. "Finding the $$\mathrm{K}$$ K Mean-Standard Deviation Shortest Paths Under Travel Time Uncertainty," Networks and Spatial Economics, Springer, vol. 24(2), pages 395-423, June.
    20. Fong, Wai Mun, 2016. "Stochastic dominance and the omega ratio," Finance Research Letters, Elsevier, vol. 17(C), pages 7-9.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:189:y:2024:i:c:s1366554524002370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.