IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v31y2019i4p771-789.html
   My bibliography  Save this article

Level 2 Reformulation Linearization Technique–Based Parallel Algorithms for Solving Large Quadratic Assignment Problems on Graphics Processing Unit Clusters

Author

Listed:
  • Ketan Date

    (Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801)

  • Rakesh Nagi

    (Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801)

Abstract

This paper discusses efficient parallel algorithms for obtaining strong lower bounds and exact solutions for large instances of the quadratic assignment problem (QAP). Our parallel architecture is comprised of both multicore processors and compute unified device architecture–enabled NVIDIA graphics processing units (GPUs) on the Blue Waters Supercomputing Facility at the University of Illinois at Urbana–Champaign. We propose novel parallelization of the Lagrangian dual ascent algorithm on the GPUs, which is used for solving a QAP formulation based on the level-2 reformulation linearization technique. The linear assignment subproblems in this procedure are solved using our accelerated Hungarian algorithm [Date K, Rakesh N (2016) GPU-accelerated Hungarian algorithms for the linear assignment problem. Parallel Computing 57:52–72.]. We embed this accelerated dual-ascent algorithm in a parallel branch-and-bound scheme and conduct extensive computational experiments on single and multiple GPUs, using problem instances with up to 42 facilities from the quadratic assignment problem library (QAPLIB). The experiments suggest that our GPU-based approach is scalable, and it can be used to obtain tight lower bounds on large QAP instances. Our accelerated branch-and-bound scheme is able to comfortably solve Nugent and Taillard instances (up to 30 facilities) from the QAPLIB, using a modest number of GPUs.

Suggested Citation

  • Ketan Date & Rakesh Nagi, 2019. "Level 2 Reformulation Linearization Technique–Based Parallel Algorithms for Solving Large Quadratic Assignment Problems on Graphics Processing Unit Clusters," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 771-789, October.
  • Handle: RePEc:inm:orijoc:v:31:y:2019:i:4:p:771-789
    DOI: 10.1287/ijoc.2018.0866
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2018.0866
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2018.0866?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adams, Warren P. & Guignard, Monique & Hahn, Peter M. & Hightower, William L., 2007. "A level-2 reformulation-linearization technique bound for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 180(3), pages 983-996, August.
    2. Loiola, Eliane Maria & de Abreu, Nair Maria Maia & Boaventura-Netto, Paulo Oswaldo & Hahn, Peter & Querido, Tania, 2007. "A survey for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 657-690, January.
    3. Hahn, Peter & Grant, Thomas & Hall, Nat, 1998. "A branch-and-bound algorithm for the quadratic assignment problem based on the Hungarian method," European Journal of Operational Research, Elsevier, vol. 108(3), pages 629-640, August.
    4. Alexandre Domingues Gonçalves & Artur Alves Pessoa & Cristiana Bentes & Ricardo Farias & Lúcia Maria de A. Drummond, 2017. "A Graphics Processing Unit Algorithm to Solve the Quadratic Assignment Problem Using Level-2 Reformulation-Linearization Technique," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 676-687, November.
    5. Peter Hahn & Thomas Grant, 1998. "Lower Bounds for the Quadratic Assignment Problem Based upon a Dual Formulation," Operations Research, INFORMS, vol. 46(6), pages 912-922, December.
    6. Peter M. Hahn & Yi-Rong Zhu & Monique Guignard & William L. Hightower & Matthew J. Saltzman, 2012. "A Level-3 Reformulation-Linearization Technique-Based Bound for the Quadratic Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 24(2), pages 202-209, May.
    7. Kaufman, L. & Broeckx, F., 1978. "An algorithm for the quadratic assignment problem using Bender's decomposition," European Journal of Operational Research, Elsevier, vol. 2(3), pages 207-211, May.
    8. Jiming Peng & Tao Zhu & Hezhi Luo & Kim-Chuan Toh, 2015. "Semi-definite programming relaxation of quadratic assignment problems based on nonredundant matrix splitting," Computational Optimization and Applications, Springer, vol. 60(1), pages 171-198, January.
    9. Eugene L. Lawler, 1963. "The Quadratic Assignment Problem," Management Science, INFORMS, vol. 9(4), pages 586-599, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huizhen Zhang & Cesar Beltran-Royo & Liang Ma, 2013. "Solving the quadratic assignment problem by means of general purpose mixed integer linear programming solvers," Annals of Operations Research, Springer, vol. 207(1), pages 261-278, August.
    2. Jiming Peng & Tao Zhu & Hezhi Luo & Kim-Chuan Toh, 2015. "Semi-definite programming relaxation of quadratic assignment problems based on nonredundant matrix splitting," Computational Optimization and Applications, Springer, vol. 60(1), pages 171-198, January.
    3. Feizollahi, Mohammad Javad & Feyzollahi, Hadi, 2015. "Robust quadratic assignment problem with budgeted uncertain flows," Operations Research Perspectives, Elsevier, vol. 2(C), pages 114-123.
    4. Pessoa, Artur Alves & Hahn, Peter M. & Guignard, Monique & Zhu, Yi-Rong, 2010. "Algorithms for the generalized quadratic assignment problem combining Lagrangean decomposition and the Reformulation-Linearization Technique," European Journal of Operational Research, Elsevier, vol. 206(1), pages 54-63, October.
    5. Hahn, Peter M. & Kim, Bum-Jin & Stutzle, Thomas & Kanthak, Sebastian & Hightower, William L. & Samra, Harvind & Ding, Zhi & Guignard, Monique, 2008. "The quadratic three-dimensional assignment problem: Exact and approximate solution methods," European Journal of Operational Research, Elsevier, vol. 184(2), pages 416-428, January.
    6. Silva, Allyson & Coelho, Leandro C. & Darvish, Maryam, 2021. "Quadratic assignment problem variants: A survey and an effective parallel memetic iterated tabu search," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1066-1084.
    7. E. de Klerk & R. Sotirov & U. Truetsch, 2015. "A New Semidefinite Programming Relaxation for the Quadratic Assignment Problem and Its Computational Perspectives," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 378-391, May.
    8. Loiola, Eliane Maria & de Abreu, Nair Maria Maia & Boaventura-Netto, Paulo Oswaldo & Hahn, Peter & Querido, Tania, 2007. "A survey for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 657-690, January.
    9. Hao Hu & Renata Sotirov, 2021. "The linearization problem of a binary quadratic problem and its applications," Annals of Operations Research, Springer, vol. 307(1), pages 229-249, December.
    10. Vittorio Maniezzo, 1999. "Exact and Approximate Nondeterministic Tree-Search Procedures for the Quadratic Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 11(4), pages 358-369, November.
    11. Richárd Molnár-Szipai & Anita Varga, 2019. "Integrating combinatorial algorithms into a linear programming solver," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 475-482, June.
    12. Adams, Warren P. & Guignard, Monique & Hahn, Peter M. & Hightower, William L., 2007. "A level-2 reformulation-linearization technique bound for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 180(3), pages 983-996, August.
    13. Nyberg, Axel & Westerlund, Tapio, 2012. "A new exact discrete linear reformulation of the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 220(2), pages 314-319.
    14. Alexandre Domingues Gonçalves & Artur Alves Pessoa & Cristiana Bentes & Ricardo Farias & Lúcia Maria de A. Drummond, 2017. "A Graphics Processing Unit Algorithm to Solve the Quadratic Assignment Problem Using Level-2 Reformulation-Linearization Technique," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 676-687, November.
    15. Nihal Berktaş & Hande Yaman, 2021. "A Branch-and-Bound Algorithm for Team Formation on Social Networks," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1162-1176, July.
    16. Lucas A. Waddell & Jerry L. Phillips & Tianzhu Liu & Swarup Dhar, 2023. "An LP-based characterization of solvable QAP instances with chess-board and graded structures," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-23, July.
    17. Peter M. Hahn & Yi-Rong Zhu & Monique Guignard & William L. Hightower & Matthew J. Saltzman, 2012. "A Level-3 Reformulation-Linearization Technique-Based Bound for the Quadratic Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 24(2), pages 202-209, May.
    18. Palubeckis, Gintaras, 2015. "Fast simulated annealing for single-row equidistant facility layout," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 287-301.
    19. Monique Guignard, 2020. "Strong RLT1 bounds from decomposable Lagrangean relaxation for some quadratic 0–1 optimization problems with linear constraints," Annals of Operations Research, Springer, vol. 286(1), pages 173-200, March.
    20. Yichuan Ding & Henry Wolkowicz, 2009. "A Low-Dimensional Semidefinite Relaxation for the Quadratic Assignment Problem," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 1008-1022, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:31:y:2019:i:4:p:771-789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.