IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i19p2995-d1486144.html
   My bibliography  Save this article

Generalized Shortest Path Problem: An Innovative Approach for Non-Additive Problems in Conditional Weighted Graphs

Author

Listed:
  • Adrien Durand

    (Laboratory of Applied Research in Active Control, Avionics and AeroServoElasticity (LARCASE), École de Technologie Supérieure (ÉTS), Université de Québec, Montréal, QC H3C 1K3, Canada)

  • Timothé Watteau

    (Laboratory of Applied Research in Active Control, Avionics and AeroServoElasticity (LARCASE), École de Technologie Supérieure (ÉTS), Université de Québec, Montréal, QC H3C 1K3, Canada)

  • Georges Ghazi

    (Laboratory of Applied Research in Active Control, Avionics and AeroServoElasticity (LARCASE), École de Technologie Supérieure (ÉTS), Université de Québec, Montréal, QC H3C 1K3, Canada)

  • Ruxandra Mihaela Botez

    (Laboratory of Applied Research in Active Control, Avionics and AeroServoElasticity (LARCASE), École de Technologie Supérieure (ÉTS), Université de Québec, Montréal, QC H3C 1K3, Canada)

Abstract

The shortest path problem is fundamental in graph theory and has been studied extensively due to its practical importance. Despite this aspect, finding the shortest path between two nodes remains a significant challenge in many applications, as it often becomes complex and time consuming. This complexity becomes even more challenging when constraints make the problem non-additive, thereby increasing the difficulty of finding the optimal path. The objective of this paper is to present a broad perspective on the conventional shortest path problem. It introduces a new method to classify cost functions associated with graphs by defining distinct sets of cost functions. This classification facilitates the exploration of line graphs and an understanding of the upper bounds on the transformation sizes for these types of graphs. Based on these foundations, the paper proposes a practical methodology for solving non-additive shortest path problems. It also provides a proof of optimality and establishes an upper bound on the algorithmic cost of the proposed methodology. This study not only expands the scope of traditional shortest path problems but also highlights their computational complexity and potential solutions.

Suggested Citation

  • Adrien Durand & Timothé Watteau & Georges Ghazi & Ruxandra Mihaela Botez, 2024. "Generalized Shortest Path Problem: An Innovative Approach for Non-Additive Problems in Conditional Weighted Graphs," Mathematics, MDPI, vol. 12(19), pages 1-24, September.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:2995-:d:1486144
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/19/2995/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/19/2995/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu, Hao & Sotirov, Renata, 2020. "On solving the quadratic shortest path problem," Other publications TiSEM 55240b45-ea97-4222-a31d-c, Tilburg University, School of Economics and Management.
    2. Raj A. Sivakumar & Rajan Batta, 1994. "The Variance-Constrained Shortest Path Problem," Transportation Science, INFORMS, vol. 28(4), pages 309-316, November.
    3. Rostami, Borzou & Chassein, André & Hopf, Michael & Frey, Davide & Buchheim, Christoph & Malucelli, Federico & Goerigk, Marc, 2018. "The quadratic shortest path problem: complexity, approximability, and solution methods," European Journal of Operational Research, Elsevier, vol. 268(2), pages 473-485.
    4. Hao Hu & Renata Sotirov, 2020. "On Solving the Quadratic Shortest Path Problem," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 219-233, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Hu & Renata Sotirov, 2021. "The linearization problem of a binary quadratic problem and its applications," Annals of Operations Research, Springer, vol. 307(1), pages 229-249, December.
    2. Hao Hu & Renata Sotirov, 2020. "On Solving the Quadratic Shortest Path Problem," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 219-233, April.
    3. Alvaro Velasquez & P. Wojciechowski & K. Subramani & Matthew Williamson, 2024. "Arc-dependent networks: theoretical insights and a computational study," Annals of Operations Research, Springer, vol. 338(2), pages 1101-1126, July.
    4. Mohri, Seyed Sina & Mohammadi, Mehrdad & Gendreau, Michel & Pirayesh, Amir & Ghasemaghaei, Ali & Salehi, Vahid, 2022. "Hazardous material transportation problems: A comprehensive overview of models and solution approaches," European Journal of Operational Research, Elsevier, vol. 302(1), pages 1-38.
    5. Sarac, Abdulkadir & Batta, Rajan & Rump, Christopher M., 2006. "A branch-and-price approach for operational aircraft maintenance routing," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1850-1869, December.
    6. Jinzuo Guo & Tianyu Liu & Guopeng Song & Bo Guo, 2024. "Solving the Robust Shortest Path Problem with Multimodal Transportation," Mathematics, MDPI, vol. 12(19), pages 1-14, September.
    7. Huang, He & Gao, Song, 2012. "Optimal paths in dynamic networks with dependent random link travel times," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 579-598.
    8. Liu, Yong & Xiao, Feng & Shen, Minyu & Zhao, Lin & Li, Lu, 2024. "The k-th order mean-deviation model for route choice under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
    9. Enrico Bettiol & Lucas Létocart & Francesco Rinaldi & Emiliano Traversi, 2020. "A conjugate direction based simplicial decomposition framework for solving a specific class of dense convex quadratic programs," Computational Optimization and Applications, Springer, vol. 75(2), pages 321-360, March.
    10. Frank Meijer & Renata Sotirov, 2020. "The quadratic cycle cover problem: special cases and efficient bounds," Journal of Combinatorial Optimization, Springer, vol. 39(4), pages 1096-1128, May.
    11. Frank de Meijer & Renata Sotirov, 2021. "SDP-Based Bounds for the Quadratic Cycle Cover Problem via Cutting-Plane Augmented Lagrangian Methods and Reinforcement Learning," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1262-1276, October.
    12. Shen, Liang & Shao, Hu & Wu, Ting & Fainman, Emily Zhu & Lam, William H.K., 2020. "Finding the reliable shortest path with correlated link travel times in signalized traffic networks under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    13. Carosi, Samuela & Frangioni, Antonio & Galli, Laura & Girardi, Leopoldo & Vallese, Giuliano, 2019. "A matheuristic for integrated timetabling and vehicle scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 99-124.
    14. Axel Parmentier, 2019. "Algorithms for non-linear and stochastic resource constrained shortest path," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(2), pages 281-317, April.
    15. Hao Hu & Renata Sotirov, 2018. "Special cases of the quadratic shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 35(3), pages 754-777, April.
    16. Tan, Zhijia & Yang, Hai & Guo, Renyong, 2014. "Pareto efficiency of reliability-based traffic equilibria and risk-taking behavior of travelers," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 16-31.
    17. Zhang, Yufeng & Khani, Alireza, 2019. "An algorithm for reliable shortest path problem with travel time correlations," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 92-113.
    18. Wang, Li & Yang, Lixing & Gao, Ziyou, 2016. "The constrained shortest path problem with stochastic correlated link travel times," European Journal of Operational Research, Elsevier, vol. 255(1), pages 43-57.
    19. Fang, Kan & Ke, Ginger Y. & Verma, Manish, 2017. "A routing and scheduling approach to rail transportation of hazardous materials with demand due dates," European Journal of Operational Research, Elsevier, vol. 261(1), pages 154-168.
    20. Elías Escobar-Gómez & J.L. Camas-Anzueto & Sabino Velázquez-Trujillo & Héctor Hernández-de-León & Rubén Grajales-Coutiño & Eduardo Chandomí-Castellanos & Héctor Guerra-Crespo, 2019. "A Linear Programming Model with Fuzzy Arc for Route Optimization in the Urban Road Network," Sustainability, MDPI, vol. 11(23), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:2995-:d:1486144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.