IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v299y2021i1d10.1007_s10479-019-03209-y.html
   My bibliography  Save this article

Fair prices under a unified lattice approach for interest rate derivatives

Author

Listed:
  • Giacomo Morelli

    (LUISS University)

Abstract

An open question in interest rates derivative pricing is whether the price of the contracts should be computed by means of a multi-curve approach (different yield curves for discounting and forwarding) or by using a single curve (just one yield curve both for discounting and forwarding). The answer is of primary importance for financial markets as it allows to define a class of fair contracts. This paper calculates and compares the price of a simple swap within both multi-curve and single curve approaches and proposes a generalization of the lattice approach, which is usually used to approximate short interest rate models in the multi-curve framework. As an example, I show how to use the Black et al. (Financ Anal J 46(1):33–39, 1990) interest rate model on binomial lattice in multi-curve framework and calculate the price of the 2–8 period swaption with a single (LIBOR) curve and two-curve (OIS+LIBOR) approaches. Such technique can be used for pricing any interest rate based contract.

Suggested Citation

  • Giacomo Morelli, 2021. "Fair prices under a unified lattice approach for interest rate derivatives," Annals of Operations Research, Springer, vol. 299(1), pages 429-441, April.
  • Handle: RePEc:spr:annopr:v:299:y:2021:i:1:d:10.1007_s10479-019-03209-y
    DOI: 10.1007/s10479-019-03209-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03209-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03209-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael Johannes & Suresh Sundaresan, 2007. "The Impact of Collateralization on Swap Rates," Journal of Finance, American Finance Association, vol. 62(1), pages 383-410, February.
    2. Heath, David & Jarrow, Robert & Morton, Andrew, 1990. "Bond Pricing and the Term Structure of Interest Rates: A Discrete Time Approximation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(4), pages 419-440, December.
    3. Uri Ron, 2000. "A Practical Guide to Swap Curve Construction," Staff Working Papers 00-17, Bank of Canada.
    4. Masaaki Fujii & Yasufumi Shimada & Akihiko Takahashi, 2009. "A Market Model of Interest Rates with Dynamic Basis Spreads in the presence of Collateral and Multiple Currencies," CARF F-Series CARF-F-196, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Apr 2011.
    5. Henrard, Marc, 2007. "The irony in the derivatives discounting," MPRA Paper 3115, University Library of Munich, Germany.
    6. Masaaki Kijima & Keiichi Tanaka & Tony Wong, 2009. "A multi-quality model of interest rates," Quantitative Finance, Taylor & Francis Journals, vol. 9(2), pages 133-145.
    7. Clifford A. Ball & Walter N. Torous, 1999. "The Stochastic Volatility of Short‐Term Interest Rates: Some International Evidence," Journal of Finance, American Finance Association, vol. 54(6), pages 2339-2359, December.
    8. Masaaki Fujii & Yasufumi Shimada & Akihiko Takahashi, 2009. "A Note on Construction of Multiple Swap Curves with and without Collateral," CARF F-Series CARF-F-154, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jan 2010.
    9. Ho, Thomas S Y & Lee, Sang-bin, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    10. Tse, Y. K., 1995. "Some international evidence on the stochastic behavior of interest rates," Journal of International Money and Finance, Elsevier, vol. 14(5), pages 721-738, October.
    11. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    12. Rama Cont & Andreea Minca, 2016. "Credit default swaps and systemic risk," Annals of Operations Research, Springer, vol. 247(2), pages 523-547, December.
    13. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    14. Nikolaos Karouzakis & John Hatgioannides & Kostas Andriosopoulos, 2018. "Convexity adjustment for constant maturity swaps in a multi-curve framework," Annals of Operations Research, Springer, vol. 266(1), pages 159-181, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taiga Saito & Shivam Gupta, 2022. "Big Data Applications with Theoretical Models and Social Media in Financial Management," CIRJE F-Series CIRJE-F-1205, CIRJE, Faculty of Economics, University of Tokyo.
    2. Taiga Saito & Shivam Gupta, 2022. "Big data applications with theoretical models and social media in financial management," CARF F-Series CARF-F-550, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Stoyan Valchev, 2004. "Stochastic volatility Gaussian Heath-Jarrow-Morton models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 11(4), pages 347-368.
    3. Yangfan Zhong, 2018. "LIBOR market model with multiplicative basis," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-38, June.
    4. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, March.
    5. Ramaprasad Bhar, 2010. "Stochastic Filtering with Applications in Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7736, August.
    6. repec:uts:finphd:41 is not listed on IDEAS
    7. Driessen, Joost & Klaassen, Pieter & Melenberg, Bertrand, 2003. "The Performance of Multi-Factor Term Structure Models for Pricing and Hedging Caps and Swaptions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(3), pages 635-672, September.
    8. Jaroslav Baran & Jiří Witzany, 2014. "Konstrukce výnosových křivek v pokrizovém období [Yield Curve Construction after Crisis]," Politická ekonomie, Prague University of Economics and Business, vol. 2014(1), pages 67-99.
    9. Yang Chang, 2014. "A Consistent Approach to Modelling the Interest Rate Market Anomalies Post the Global Financial Crisis," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 18, July-Dece.
    10. Jean-Paul Laurent & Philippe Amzelek & Joe Bonnaud, 2014. "An overview of the valuation of collateralized derivative contracts," Review of Derivatives Research, Springer, vol. 17(3), pages 261-286, October.
    11. repec:uts:finphd:40 is not listed on IDEAS
    12. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    13. Oldrich Alfons Vasicek & Francisco Venegas-Martínez, 2021. "Models of the Term Structure of Interest Rates: Review, Trends, and Perspectives," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-28, Abril - J.
    14. Dwight Grant & Gautam Vora, 2006. "Extending the universality of the Heath–Jarrow–Morton model," Review of Financial Economics, John Wiley & Sons, vol. 15(2), pages 129-157.
    15. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    16. David Bolder, 2001. "Affine Term-Structure Models: Theory and Implementation," Staff Working Papers 01-15, Bank of Canada.
    17. Cheikh Mbaye & Frédéric Vrins, 2022. "Affine term structure models: A time‐change approach with perfect fit to market curves," Mathematical Finance, Wiley Blackwell, vol. 32(2), pages 678-724, April.
    18. Chiara Sabelli & Michele Pioppi & Luca Sitzia & Giacomo Bormetti, 2014. "Multi-curve HJM modelling for risk management," Papers 1411.3977, arXiv.org, revised Oct 2015.
    19. Mauricio Contreras G. & Roberto Ortiz H, 2021. "Three little arbitrage theorems," Papers 2104.10187, arXiv.org.
    20. repec:dau:papers:123456789/5374 is not listed on IDEAS
    21. Xiao Lin, 2016. "The Zero-Coupon Rate Model for Derivatives Pricing," Papers 1606.01343, arXiv.org, revised Feb 2022.
    22. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018, January-A.
    23. Jirô Akahori & Hiroki Aoki & Yoshihiko Nagata, 2006. "Generalizations of Ho–Lee’s binomial interest rate model I: from one- to multi-factor," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(2), pages 151-179, June.

    More about this item

    Keywords

    Interest rates; Single curve; Multiple curve; Derivative pricing; Fair contracts;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:299:y:2021:i:1:d:10.1007_s10479-019-03209-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.