IDEAS home Printed from https://ideas.repec.org/a/kap/apfinm/v13y2006i2p151-179.html
   My bibliography  Save this article

Generalizations of Ho–Lee’s binomial interest rate model I: from one- to multi-factor

Author

Listed:
  • Jirô Akahori
  • Hiroki Aoki
  • Yoshihiko Nagata

Abstract

In this paper a multi-factor generalization of Ho–Lee model is proposed. In sharp contrast to the classical Ho–Lee, this generalization allows for those movements other than parallel shifts, while it still is described by a recombining tree, and is a process with stationary independent increments to be compatible with principal component analysis. Based on the model, generalizations of duration-based hedging are proposed. A continuous-time limit of the model is also discussed. Copyright Springer Science+Business Media, LLC 2006

Suggested Citation

  • Jirô Akahori & Hiroki Aoki & Yoshihiko Nagata, 2006. "Generalizations of Ho–Lee’s binomial interest rate model I: from one- to multi-factor," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(2), pages 151-179, June.
  • Handle: RePEc:kap:apfinm:v:13:y:2006:i:2:p:151-179
    DOI: 10.1007/s10690-007-9039-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10690-007-9039-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10690-007-9039-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    2. Heath, David & Jarrow, Robert & Morton, Andrew, 1990. "Bond Pricing and the Term Structure of Interest Rates: A Discrete Time Approximation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(4), pages 419-440, December.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    4. Inui, Koji & Kijima, Masaaki, 1998. "A Markovian Framework in Multi-Factor Heath-Jarrow-Morton Models," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(3), pages 423-440, September.
    5. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
    6. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    7. Ho, Thomas S Y & Lee, Sang-bin, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    8. Li Chen & Damir Filipović & H. Vincent Poor, 2004. "Quadratic Term Structure Models For Risk‐Free And Defaultable Rates," Mathematical Finance, Wiley Blackwell, vol. 14(4), pages 515-536, October.
    9. Peter Ritchken & L. Sankarasubramanian, 1995. "Volatility Structures Of Forward Rates And The Dynamics Of The Term Structure1," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 55-72, January.
    10. Jirô Akahori, 2005. "A discrete Itô calculus approach to He’s framework for multi-factor discrete markets," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 12(3), pages 273-287, September.
    11. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    12. Robert Jarrow, 2017. "Derivatives," World Scientific Book Chapters, in: THE ECONOMIC FOUNDATIONS OF RISK MANAGEMENT Theory, Practice, and Applications, chapter 3, pages 19-28, World Scientific Publishing Co. Pte. Ltd..
    13. Longstaff, Francis A & Schwartz, Eduardo S, 1992. "Interest Rate Volatility and the Term Structure: A Two-Factor General Equilibrium Model," Journal of Finance, American Finance Association, vol. 47(4), pages 1259-1282, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Young Shin Kim & Stoyan Stoyanov & Svetlozar Rachev & Frank J. Fabozzi, 2017. "Another Look at the Ho-Lee Bond Option Pricing Model," Papers 1712.06664, arXiv.org.
    2. Laurini, Márcio Poletti & Ohashi, Alberto, 2015. "A noisy principal component analysis for forward rate curves," European Journal of Operational Research, Elsevier, vol. 246(1), pages 140-153.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, May.
    2. Josheski Dushko & Apostolov Mico, 2021. "Equilibrium Short-Rate Models Vs No-Arbitrage Models: Literature Review and Computational Examples," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 25(3), pages 42-71, September.
    3. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    4. repec:uts:finphd:40 is not listed on IDEAS
    5. Patrick Hagan & Diana Woodward, 1999. "Markov interest rate models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(4), pages 233-260.
    6. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    7. Oldrich Alfons Vasicek & Francisco Venegas-Martínez, 2021. "Models of the Term Structure of Interest Rates: Review, Trends, and Perspectives," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-28, Abril - J.
    8. Carl Chiarella & Oh-Kang Kwon, 2001. "State Variables and the Affine Nature of Markovian HJM Term Structure Models," Research Paper Series 52, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. Camilla Landén & Tomas Björk, 2002. "On the construction of finite dimensional realizations for nonlinear forward rate models," Finance and Stochastics, Springer, vol. 6(3), pages 303-331.
    10. Dai, Qiang & Singleton, Kenneth J., 2003. "Fixed-income pricing," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 20, pages 1207-1246, Elsevier.
    11. Anders B. Trolle & Eduardo S. Schwartz, 2009. "A General Stochastic Volatility Model for the Pricing of Interest Rate Derivatives," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 2007-2057, May.
    12. repec:dau:papers:123456789/5374 is not listed on IDEAS
    13. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018, January-A.
    14. Oldrich Alfons Vasicek & Francisco Venegas-Martínez, 2021. "Modelos de la estructura de plazos de las tasas de interés: Revisión, tendencias y perspectivas," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-28, Abril - J.
    15. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 5, July-Dece.
    16. Ramaprasad Bhar, 2010. "Stochastic Filtering with Applications in Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7736, August.
    17. Oldrich Alfons Vasicek & Francisco Venegas-Martínez, 2021. "Modelos de la estructura de plazos de las tasas de interés: Revisión, tendencias y perspectivas," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-28, Abril - J.
    18. Casassus, Jaime & Collin-Dufresne, Pierre & Goldstein, Bob, 2005. "Unspanned stochastic volatility and fixed income derivatives pricing," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2723-2749, November.
    19. Björk, Tomas, 2000. "A Geometric View of Interest Rate Theory," SSE/EFI Working Paper Series in Economics and Finance 419, Stockholm School of Economics, revised 21 Dec 2000.
    20. Robert R. Bliss & Ehud I. Ronn, 1997. "Callable U.S. Treasury bonds: optimal calls, anomalies, and implied volatilities," FRB Atlanta Working Paper 97-1, Federal Reserve Bank of Atlanta.
    21. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    22. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.

    More about this item

    Keywords

    Ho–Lee model; Duration; Multi-factor; Recombining tree; Stationary increments; Forward rate; Drift condition; 91B28; 60G50; G12;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:apfinm:v:13:y:2006:i:2:p:151-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.