IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2104.10187.html
   My bibliography  Save this paper

Three little arbitrage theorems

Author

Listed:
  • Mauricio Contreras G.
  • Roberto Ortiz H

Abstract

We prove three theorems about the exact solutions of a generalized or interacting Black-Scholes equation that explicitly includes arbitrage bubbles. These arbitrage bubbles can be characterized by an arbitrage number $A_N(T)$. The first theorem states that if $A_N(T) = 0$, then the solution at the maturity of the interacting equation is identical to the solution of the free Black-Scholes equation with the same initial interest rate $r$. The second theorem states that if $A_N(T) \ne 0$, the solution can be expressed in terms of all higher derivatives of solutions to the free Black-Scholes equation with the initial interest rate $r$. The third theorem states that whatever the arbitrage number is, the solution is a solution to the free Black-Scholes equation with a variable interest rate $r(\tau) = r + (1/\tau) A_N(\tau)$. Also, we show, by using the Feynman-Kac theorem, that for the special case of a Call contract, the exact solution for a Call with strike price $K$ is equivalent to the usual Call solution to the Black-Scholes equation with strike price $\tilde{K} = K e^{-A_N(T)}$.

Suggested Citation

  • Mauricio Contreras G. & Roberto Ortiz H, 2021. "Three little arbitrage theorems," Papers 2104.10187, arXiv.org.
  • Handle: RePEc:arx:papers:2104.10187
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2104.10187
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kirill Ilinski, 1999. "How to account for virtual arbitrage in the standard derivative pricing," Papers cond-mat/9902047, arXiv.org.
    2. Kirill Ilinski & Alexander Stepanenko, 1999. "Derivative pricing with virtual arbitrage," Papers cond-mat/9902046, arXiv.org.
    3. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    4. Adrian, Tobias, 2009. "Inference, arbitrage, and asset price volatility," Journal of Financial Intermediation, Elsevier, vol. 18(1), pages 49-64, January.
    5. Attari, Mukarram & Mello, Antonio S., 2006. "Financially constrained arbitrage in illiquid markets," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2793-2822, December.
    6. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    7. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    8. Mauricio Contreras & Rely Pellicer & Daniel Santiagos & Marcelo Villena, 2015. "Calibration and simulation of arbitrage effects in a non-equilibrium quantum Black-Scholes model by using semiclassical methods," Papers 1512.05377, arXiv.org.
    9. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    10. Contreras, Mauricio & Pellicer, Rely & Villena, Marcelo & Ruiz, Aaron, 2010. "A quantum model of option pricing: When Black–Scholes meets Schrödinger and its semi-classical limit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5447-5459.
    11. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    12. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    13. Kirill Ilinski, 1997. "Physics of Finance," Papers hep-th/9710148, arXiv.org.
    14. Cornell, Bradford & French, Kenneth R, 1983. "Taxes and the Pricing of Stock Index Futures," Journal of Finance, American Finance Association, vol. 38(3), pages 675-694, June.
    15. Contreras, Mauricio & Montalva, Rodrigo & Pellicer, Rely & Villena, Marcelo, 2010. "Dynamic option pricing with endogenous stochastic arbitrage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3552-3564.
    16. Brennan, Michael J & Schwartz, Eduardo S, 1990. "Arbitrage in Stock Index Futures," The Journal of Business, University of Chicago Press, vol. 63(1), pages 7-31, January.
    17. Figlewski, Stephen, 1984. "Hedging Performance and Basis Risk in Stock Index Futures," Journal of Finance, American Finance Association, vol. 39(3), pages 657-669, July.
    18. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    19. Contreras, M. & Echeverría, J. & Peña, J.P. & Villena, M., 2020. "Resonance phenomena in option pricing with arbitrage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    20. Ho, Thomas S Y & Lee, Sang-bin, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Contreras, M. & Echeverría, J. & Peña, J.P. & Villena, M., 2020. "Resonance phenomena in option pricing with arbitrage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    2. Mauricio Contreras G, 2020. "Endogenous Stochastic Arbitrage Bubbles and the Black--Scholes model," Papers 2009.09329, arXiv.org.
    3. Contreras G., Mauricio, 2021. "Endogenous stochastic arbitrage bubbles and the Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    4. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, December.
    5. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    6. Contreras, Mauricio & Montalva, Rodrigo & Pellicer, Rely & Villena, Marcelo, 2010. "Dynamic option pricing with endogenous stochastic arbitrage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3552-3564.
    7. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, May.
    8. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    9. Dong-Mei Zhu & Jiejun Lu & Wai-Ki Ching & Tak-Kuen Siu, 2019. "Option Pricing Under a Stochastic Interest Rate and Volatility Model with Hidden Markovian Regime-Switching," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 555-586, February.
    10. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    11. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    12. repec:dau:papers:123456789/5374 is not listed on IDEAS
    13. Jimmy E. Hilliard & Adam L. Schwartz & Alan L. Tucker, 1996. "Bivariate Binomial Options Pricing With Generalized Interest Rate Processes," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(4), pages 585-602, December.
    14. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    15. Ravi Kashyap, 2022. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Annals of Operations Research, Springer, vol. 315(2), pages 1175-1215, August.
    16. Mauricio Contreras & Rely Pellicer & Daniel Santiagos & Marcelo Villena, 2015. "Calibration and simulation of arbitrage effects in a non-equilibrium quantum Black-Scholes model by using semiclassical methods," Papers 1512.05377, arXiv.org.
    17. Choi, Jaehyung, 2012. "Spontaneous symmetry breaking of arbitrage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3206-3218.
    18. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    19. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
    20. repec:uts:finphd:40 is not listed on IDEAS
    21. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    22. Boero, G. & Torricelli, C., 1996. "A comparative evaluation of alternative models of the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 93(1), pages 205-223, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2104.10187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.