IDEAS home Printed from https://ideas.repec.org/a/wly/revfec/v15y2006i2p129-157.html
   My bibliography  Save this article

Extending the universality of the Heath–Jarrow–Morton model

Author

Listed:
  • Dwight Grant
  • Gautam Vora

Abstract

Heath, Jarrow, and Morton (HJM) developed an important model of the evolution of interest rates. A key assumption of the model is that interest rate changes are normally distributed in continuous time. Implementing the HJM‐method of evolution of interest rates in discrete time for more complex volatility functions remains a significant challenge. In this article, we present a relatively simple and flexible method of implementation, that extends the usefulness of the HJM model. The derivation assumes that the distribution of interest rates is stable, but not necessarily identical, for each discrete time period. This allows us to identify the drift‐adjustment terms necessary to build interest rate lattices and trees and Monte Carlo simulations that satisfy exactly the no‐arbitrage and volatility conditions, even complex ones, of the model. The much more difficult discrete‐time implementation methods suggested in the literature (Heath, Jarrow, and Morton (1991) [Heath, D., Jarrow, R. & Morton, A. (1991). Contingent claim valuation with a random evolution of interest rates. Review of Futures Markets, 54–76.] and Jarrow (1996) [Jarrow, R. (1996). Modeling fixed income securities and interest rate options. New York, NY: McGraw‐Hill Companies Inc.]) do not accomplish that. We illustrate our analytical implementation with three examples of volatility functions and demonstrate its superiority to other methods of implementation.

Suggested Citation

  • Dwight Grant & Gautam Vora, 2006. "Extending the universality of the Heath–Jarrow–Morton model," Review of Financial Economics, John Wiley & Sons, vol. 15(2), pages 129-157.
  • Handle: RePEc:wly:revfec:v:15:y:2006:i:2:p:129-157
    DOI: 10.1016/j.rfe.2005.04.003
    as

    Download full text from publisher

    File URL: https://doi.org/10.1016/j.rfe.2005.04.003
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.rfe.2005.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Heath, David & Jarrow, Robert & Morton, Andrew, 1990. "Bond Pricing and the Term Structure of Interest Rates: A Discrete Time Approximation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(4), pages 419-440, December.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    3. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    4. Dwight Grant & Gautam Vora, 2002. "The Hull and White Model of the Short Rate: An Alternative Analytical Representation," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 25(4), pages 463-476, December.
    5. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    6. Ho, Thomas S Y & Lee, Sang-bin, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    7. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    8. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grant, Dwight & Vora, Gautam, 2006. "Extending the universality of the Heath-Jarrow-Morton model," Review of Financial Economics, Elsevier, vol. 15(2), pages 129-157.
    2. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, May.
    3. Robert R. Bliss & Ehud I. Ronn, 1997. "Callable U.S. Treasury bonds: optimal calls, anomalies, and implied volatilities," FRB Atlanta Working Paper 97-1, Federal Reserve Bank of Atlanta.
    4. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. repec:uts:finphd:40 is not listed on IDEAS
    7. Oldrich Alfons Vasicek & Francisco Venegas-Martínez, 2021. "Models of the Term Structure of Interest Rates: Review, Trends, and Perspectives," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-28, Abril - J.
    8. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    9. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018, January-A.
    10. Oldrich Alfons Vasicek & Francisco Venegas-Martínez, 2021. "Modelos de la estructura de plazos de las tasas de interés: Revisión, tendencias y perspectivas," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-28, Abril - J.
    11. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, August.
    12. Raj, Mahendra & Sim, Ah Boon & Thurston, David C., 1997. "A generalized method of moments comparison of the cox-ingersoll-ross and heath-jarrow-morton models," Journal of Economics and Business, Elsevier, vol. 49(2), pages 169-192.
    13. Kuo, I-Doun & Lin, Yueh-Neng, 2009. "Empirical performance of multifactor term structure models for pricing and hedging Eurodollar futures options," Review of Financial Economics, Elsevier, vol. 18(1), pages 23-32, January.
    14. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    15. Oldrich Alfons Vasicek & Francisco Venegas-Martínez, 2021. "Modelos de la estructura de plazos de las tasas de interés: Revisión, tendencias y perspectivas," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-28, Abril - J.
    16. Lin, Bing-Huei, 1999. "Fitting the term structure of interest rates for Taiwanese government bonds," Journal of Multinational Financial Management, Elsevier, vol. 9(3-4), pages 331-352, November.
    17. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    18. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    19. Yao, Yong, 1999. "Term structure modeling and asymptotic long rate," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 327-336, December.
    20. Fan, Longzhen & Johansson, Anders C., 2010. "China's official rates and bond yields," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 996-1007, May.
    21. Chenghu Ma, 2003. "Term Structure of Interest Rates in the Presence of Levy Jumps: The HJM Approach," Annals of Economics and Finance, Society for AEF, vol. 4(2), pages 401-426, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:revfec:v:15:y:2006:i:2:p:129-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1873-5924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.