IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v266y2018i1d10.1007_s10479-017-2430-6.html
   My bibliography  Save this article

Convexity adjustment for constant maturity swaps in a multi-curve framework

Author

Listed:
  • Nikolaos Karouzakis

    (University of Sussex)

  • John Hatgioannides

    (City University London)

  • Kostas Andriosopoulos

    (ESCP Europe Business School)

Abstract

In this paper we propose a double curving setup with distinct forward and discount curves to price constant maturity swaps (CMS). Using separate curves for discounting and forwarding, we develop a new convexity adjustment, by departing from the restrictive assumption of a flat term structure, and expand our setting to incorporate the more realistic and even challenging case of term structure tilts. We calibrate CMS spreads to market data and numerically compare our adjustments against the Black and SABR (stochastic alpha beta rho) CMS adjustments widely used in the market. Our analysis suggests that the proposed convexity adjustment is significantly larger compared to the Black and SABR adjustments and offers a consistent and robust valuation of CMS spreads across different market conditions.

Suggested Citation

  • Nikolaos Karouzakis & John Hatgioannides & Kostas Andriosopoulos, 2018. "Convexity adjustment for constant maturity swaps in a multi-curve framework," Annals of Operations Research, Springer, vol. 266(1), pages 159-181, July.
  • Handle: RePEc:spr:annopr:v:266:y:2018:i:1:d:10.1007_s10479-017-2430-6
    DOI: 10.1007/s10479-017-2430-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2430-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2430-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Moreni & A. Pallavicini, 2014. "Parsimonious HJM modelling for multiple yield curve dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 199-210, February.
    2. Zorana Grbac & Antonis Papapantoleon & John Schoenmakers & David Skovmand, 2014. "Affine LIBOR models with multiple curves: theory, examples and calibration," Papers 1405.2450, arXiv.org, revised Aug 2015.
    3. Masaaki Kijima & Keiichi Tanaka & Tony Wong, 2009. "A multi-quality model of interest rates," Quantitative Finance, Taylor & Francis Journals, vol. 9(2), pages 133-145.
    4. Christa Cuchiero & Claudio Fontana & Alessandro Gnoatto, 2016. "A general HJM framework for multiple yield curve modelling," Finance and Stochastics, Springer, vol. 20(2), pages 267-320, April.
    5. St�phane Cr�pey & Zorana Grbac & Nathalie Ngor & David Skovmand, 2015. "A L�vy HJM multiple-curve model with application to CVA computation," Quantitative Finance, Taylor & Francis Journals, vol. 15(3), pages 401-419, March.
    6. Henrard, Marc, 2007. "CMS swaps in separable one-factor Gaussian LLM and HJM model," MPRA Paper 3228, University Library of Munich, Germany.
    7. Andrea Pallavicini & Marco Tarenghi, 2010. "Interest-Rate Modeling with Multiple Yield Curves," Papers 1006.4767, arXiv.org.
    8. Jun Liu & Francis A. Longstaff & Ravit E. Mandell, 2006. "The Market Price of Risk in Interest Rate Swaps: The Roles of Default and Liquidity Risks," The Journal of Business, University of Chicago Press, vol. 79(5), pages 2337-2360, September.
    9. Bianchetti, Marco, 2008. "Two Curves, One Price :Pricing & Hedging Interest Rate Derivatives Decoupling Forwarding and Discounting Yield Curves," MPRA Paper 22022, University Library of Munich, Germany, revised 24 Jan 2010.
    10. Fanelli, Viviana, 2016. "A defaultable HJM modelling of the Libor rate for pricing Basis Swaps after the credit crunch," European Journal of Operational Research, Elsevier, vol. 249(1), pages 238-244.
    11. Filipović, Damir & Trolle, Anders B., 2013. "The term structure of interbank risk," Journal of Financial Economics, Elsevier, vol. 109(3), pages 707-733.
    12. A. Pelsser, 2003. "Mathematical foundation of convexity correction," Quantitative Finance, Taylor & Francis Journals, vol. 3(1), pages 59-65.
    13. Wendong Zheng & Yue Kuen Kwok, 2011. "Convexity meets replication: Hedging of swap derivatives and annuity options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(7), pages 659-678, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giacomo Morelli, 2021. "Fair prices under a unified lattice approach for interest rate derivatives," Annals of Operations Research, Springer, vol. 299(1), pages 429-441, April.
    2. Nicholas BURGESS, 2019. "Convexity Adjustments Made Easy: An Overview of Convexity Adjustment Methodologies in Interest Rate Markets," Journal of Economics and Financial Analysis, Tripal Publishing House, vol. 3(2), pages 41-83.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Macrina & Obeid Mahomed, 2018. "Consistent Valuation Across Curves Using Pricing Kernels," Papers 1801.04994, arXiv.org, revised Feb 2018.
    2. Christa Cuchiero & Claudio Fontana & Alessandro Gnoatto, 2016. "A general HJM framework for multiple yield curve modelling," Finance and Stochastics, Springer, vol. 20(2), pages 267-320, April.
    3. Christa Cuchiero & Claudio Fontana & Alessandro Gnoatto, 2019. "Affine multiple yield curve models," Mathematical Finance, Wiley Blackwell, vol. 29(2), pages 568-611, April.
    4. The Anh Nguyen & Frank Thomas Seifried, 2015. "The Multi-Curve Potential Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(07), pages 1-32, November.
    5. Fanelli, Viviana, 2017. "Implications of implicit credit spread volatilities on interest rate modelling," European Journal of Operational Research, Elsevier, vol. 263(2), pages 707-718.
    6. Claudio Fontana & Zorana Grbac & Sandrine Gümbel & Thorsten Schmidt, 2020. "Term structure modelling for multiple curves with stochastic discontinuities," Finance and Stochastics, Springer, vol. 24(2), pages 465-511, April.
    7. Alessandro Gnoatto & Nicole Seiffert, 2020. "Cross Currency Valuation and Hedging in the Multiple Curve Framework," Working Papers 03/2020, University of Verona, Department of Economics.
    8. Yangfan Zhong & Yanhui Mi, 2018. "Pricing in-arrears caps and ratchet caps under LIBOR market model with multiplicative basis," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-31, September.
    9. Andrea Macrina & Obeid Mahomed, 2018. "Consistent Valuation Across Curves Using Pricing Kernels," Risks, MDPI, vol. 6(1), pages 1-39, March.
    10. Yangfan Zhong, 2018. "LIBOR market model with multiplicative basis," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-38, June.
    11. Gerhart, Christoph & Lütkebohmert, Eva, 2020. "Empirical analysis and forecasting of multiple yield curves," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 59-78.
    12. Stephane Crepey & Andrea Macrina & Tuyet Mai Nguyen & David Skovmand, 2015. "Rational Multi-Curve Models with Counterparty-Risk Valuation Adjustments," Papers 1502.07397, arXiv.org.
    13. Atkins, Philip J. & Cummins, Mark, 2023. "Improved scalability and risk factor proxying with a two-step principal component analysis for multi-curve modelling," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1331-1348.
    14. Alessandro Gnoatto & Silvia Lavagnini, 2023. "Cross-Currency Heath-Jarrow-Morton Framework in the Multiple-Curve Setting," Papers 2312.13057, arXiv.org.
    15. Damiano Brigo & Andrea Pallavicini, 2014. "CCP Cleared or Bilateral CSA Trades with Initial/Variation Margins under credit, funding and wrong-way risks: A Unified Valuation Approach," Papers 1401.3994, arXiv.org.
    16. Chiara Sabelli & Michele Pioppi & Luca Sitzia & Giacomo Bormetti, 2014. "Multi-curve HJM modelling for risk management," Papers 1411.3977, arXiv.org, revised Oct 2015.
    17. Gallitschke, Janek & Seifried (née Müller), Stefanie & Seifried, Frank Thomas, 2017. "Interbank interest rates: Funding liquidity risk and XIBOR basis spreads," Journal of Banking & Finance, Elsevier, vol. 78(C), pages 142-152.
    18. Marek Rutkowski & Matthew Bickersteth, 2021. "Pricing and Hedging of SOFR Derivatives under Differential Funding Costs and Collateralization," Papers 2112.14033, arXiv.org.
    19. Claudio Fontana & Zorana Grbac & Sandrine Gümbel & Thorsten Schmidt, 2020. "Term structure modelling for multiple curves with stochastic discontinuities," Post-Print hal-03898927, HAL.
    20. Alfeus, Mesias & Grasselli, Martino & Schlögl, Erik, 2020. "A consistent stochastic model of the term structure of interest rates for multiple tenors," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:266:y:2018:i:1:d:10.1007_s10479-017-2430-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.