IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v294y2020i1d10.1007_s10479-019-03315-x.html
   My bibliography  Save this article

Minimum cost edge blocker clique problem

Author

Listed:
  • Foad Mahdavi Pajouh

    (University of Massachusetts Boston)

Abstract

Given a graph with weights on its vertices and blocking costs on its edges, and a user-defined threshold $$\tau >0$$ τ > 0 , the minimum cost edge blocker clique problem (EBCP) is introduced as the problem of blocking a minimum cost subset of edges so that each clique’s weight is bounded above by $$\tau $$ τ . Clusters composed of important actors with quick communications can be effectively modeled as large-weight cliques in real-world settings such as social, communication, and biological systems. Here, we prove that EBCP is NP-hard even when $$\tau $$ τ is a fixed parameter, and propose a combinatorial lower bound for its optimal objective. A class of inequalities that are valid for the set of feasible solution to EBCP is identified, and sufficient conditions for these inequalities to induce facets are presented. Using this class of inequalities, EBCP is formulated as a linear 0–1 program including potentially exponential number of constraints. We develop the first problem-specific branch-and-cut algorithm to solve EBCP, which utilizes the aforementioned constraints in a lazy manner. We also developed the first combinatorial branch-and-bound solution approach for this problem, which aims to handle large graph instances. Finally, computational results of solving EBCP on a collection of random graphs and power-law real-world networks by using our proposed exact algorithms are also provided.

Suggested Citation

  • Foad Mahdavi Pajouh, 2020. "Minimum cost edge blocker clique problem," Annals of Operations Research, Springer, vol. 294(1), pages 345-376, November.
  • Handle: RePEc:spr:annopr:v:294:y:2020:i:1:d:10.1007_s10479-019-03315-x
    DOI: 10.1007/s10479-019-03315-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03315-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03315-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahdavi Pajouh, Foad & Walteros, Jose L. & Boginski, Vladimir & Pasiliao, Eduardo L., 2015. "Minimum edge blocker dominating set problem," European Journal of Operational Research, Elsevier, vol. 247(1), pages 16-26.
    2. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2017. "A New General-Purpose Algorithm for Mixed-Integer Bilevel Linear Programs," Operations Research, INFORMS, vol. 65(6), pages 1615-1637, December.
    3. Wu, Qinghua & Hao, Jin-Kao, 2015. "A review on algorithms for maximum clique problems," European Journal of Operational Research, Elsevier, vol. 242(3), pages 693-709.
    4. P. M. Ghare & D. C. Montgomery & W. C. Turner, 1971. "Optimal interdiction policy for a flow network," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 18(1), pages 37-45, March.
    5. Cristina Bazgan & Sonia Toubaline & Daniel Vanderpooten, 2013. "Critical edges/nodes for the minimum spanning tree problem: complexity and approximation," Journal of Combinatorial Optimization, Springer, vol. 26(1), pages 178-189, July.
    6. Richard Wollmer, 1964. "Removing Arcs from a Network," Operations Research, INFORMS, vol. 12(6), pages 934-940, December.
    7. Butenko, S. & Wilhelm, W.E., 2006. "Clique-detection models in computational biochemistry and genomics," European Journal of Operational Research, Elsevier, vol. 173(1), pages 1-17, August.
    8. Marco Di Summa & Andrea Grosso & Marco Locatelli, 2012. "Branch and cut algorithms for detecting critical nodes in undirected graphs," Computational Optimization and Applications, Springer, vol. 53(3), pages 649-680, December.
    9. Alexander Veremyev & Oleg A. Prokopyev & Eduardo L. Pasiliao, 2014. "An integer programming framework for critical elements detection in graphs," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 233-273, July.
    10. T. N. Dinh & M. T. Thai & H. T. Nguyen, 2014. "Bound and exact methods for assessing link vulnerability in complex networks," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 3-24, July.
    11. Yezerska, Oleksandra & Mahdavi Pajouh, Foad & Butenko, Sergiy, 2017. "On biconnected and fragile subgraphs of low diameter," European Journal of Operational Research, Elsevier, vol. 263(2), pages 390-400.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Ningji & Walteros, Jose L., 2022. "Integer programming methods for solving binary interdiction games," European Journal of Operational Research, Elsevier, vol. 302(2), pages 456-469.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Haonan & Mahdavi Pajouh, Foad & A. Prokopyev, Oleg, 2023. "On designing networks resilient to clique blockers," European Journal of Operational Research, Elsevier, vol. 307(1), pages 20-32.
    2. Ningji Wei & Jose L. Walteros & Foad Mahdavi Pajouh, 2021. "Integer Programming Formulations for Minimum Spanning Tree Interdiction," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1461-1480, October.
    3. Wei, Ningji & Walteros, Jose L., 2022. "Integer programming methods for solving binary interdiction games," European Journal of Operational Research, Elsevier, vol. 302(2), pages 456-469.
    4. Claudio Contardo & Jorge A. Sefair, 2022. "A Progressive Approximation Approach for the Exact Solution of Sparse Large-Scale Binary Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 890-908, March.
    5. Mahdavi Pajouh, Foad & Walteros, Jose L. & Boginski, Vladimir & Pasiliao, Eduardo L., 2015. "Minimum edge blocker dominating set problem," European Journal of Operational Research, Elsevier, vol. 247(1), pages 16-26.
    6. Bernardetta Addis & Roberto Aringhieri & Andrea Grosso & Pierre Hosteins, 2016. "Hybrid constructive heuristics for the critical node problem," Annals of Operations Research, Springer, vol. 238(1), pages 637-649, March.
    7. Bernardetta Addis & Roberto Aringhieri & Andrea Grosso & Pierre Hosteins, 2016. "Hybrid constructive heuristics for the critical node problem," Annals of Operations Research, Springer, vol. 238(1), pages 637-649, March.
    8. Marco Di Summa & Syed Md Omar Faruk, 2023. "Critical node/edge detection problems on trees," 4OR, Springer, vol. 21(3), pages 439-455, September.
    9. Zhou, Yi & Lin, Weibo & Hao, Jin-Kao & Xiao, Mingyu & Jin, Yan, 2022. "An effective branch-and-bound algorithm for the maximum s-bundle problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 27-39.
    10. Veremyev, Alexander & Boginski, Vladimir & Pasiliao, Eduardo L. & Prokopyev, Oleg A., 2022. "On integer programming models for the maximum 2-club problem and its robust generalizations in sparse graphs," European Journal of Operational Research, Elsevier, vol. 297(1), pages 86-101.
    11. Oleksandra Yezerska & Sergiy Butenko & Vladimir L. Boginski, 2018. "Detecting robust cliques in graphs subject to uncertain edge failures," Annals of Operations Research, Springer, vol. 262(1), pages 109-132, March.
    12. Chen, Wei & Jiang, Manrui & Jiang, Cheng & Zhang, Jun, 2020. "Critical node detection problem for complex network in undirected weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    13. Zhang, Jing & Zhuang, Jun & Behlendorf, Brandon, 2018. "Stochastic shortest path network interdiction with a case study of Arizona–Mexico border," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 62-73.
    14. Bloch, Francis & Chatterjee, Kalyan & Dutta, Bhaskar, 2023. "Attack and interception in networks," Theoretical Economics, Econometric Society, vol. 18(4), November.
    15. Young‐Soo Myung & Hyun‐Joon Kim, 2007. "Network disconnection problems in a centralized network," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(7), pages 710-719, October.
    16. Zhou, Yangming & Wang, Gezi & Hao, Jin-Kao & Geng, Na & Jiang, Zhibin, 2023. "A fast tri-individual memetic search approach for the distance-based critical node problem," European Journal of Operational Research, Elsevier, vol. 308(2), pages 540-554.
    17. David L. Alderson & Gerald G. Brown & W. Matthew Carlyle & R. Kevin Wood, 2018. "Assessing and Improving the Operational Resilience of a Large Highway Infrastructure System to Worst-Case Losses," Transportation Science, INFORMS, vol. 52(4), pages 1012-1034, August.
    18. Tayyebi, Javad & Mitra, Ankan & Sefair, Jorge A., 2023. "The continuous maximum capacity path interdiction problem," European Journal of Operational Research, Elsevier, vol. 305(1), pages 38-52.
    19. Li, Chu-Min & Liu, Yanli & Jiang, Hua & Manyà, Felip & Li, Yu, 2018. "A new upper bound for the maximum weight clique problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 66-77.
    20. Coniglio, Stefano & Furini, Fabio & San Segundo, Pablo, 2021. "A new combinatorial branch-and-bound algorithm for the Knapsack Problem with Conflicts," European Journal of Operational Research, Elsevier, vol. 289(2), pages 435-455.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:294:y:2020:i:1:d:10.1007_s10479-019-03315-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.