IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v242y2015i3p693-709.html
   My bibliography  Save this article

A review on algorithms for maximum clique problems

Author

Listed:
  • Wu, Qinghua
  • Hao, Jin-Kao

Abstract

The maximum clique problem (MCP) is to determine in a graph a clique (i.e., a complete subgraph) of maximum cardinality. The MCP is notable for its capability of modeling other combinatorial problems and real-world applications. As one of the most studied NP-hard problems, many algorithms are available in the literature and new methods are continually being proposed. Given that the two existing surveys on the MCP date back to 1994 and 1999 respectively, one primary goal of this paper is to provide an updated and comprehensive review on both exact and heuristic MCP algorithms, with a special focus on recent developments. To be informative, we identify the general framework followed by these algorithms and pinpoint the key ingredients that make them successful. By classifying the main search strategies and putting forward the critical elements of the most relevant clique methods, this review intends to encourage future development of more powerful methods and motivate new applications of the clique approaches.

Suggested Citation

  • Wu, Qinghua & Hao, Jin-Kao, 2015. "A review on algorithms for maximum clique problems," European Journal of Operational Research, Elsevier, vol. 242(3), pages 693-709.
  • Handle: RePEc:eee:ejores:v:242:y:2015:i:3:p:693-709
    DOI: 10.1016/j.ejor.2014.09.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714008030
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.09.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Evgeny Maslov & Mikhail Batsyn & Panos Pardalos, 2014. "Speeding up branch and bound algorithms for solving the maximum clique problem," Journal of Global Optimization, Springer, vol. 59(1), pages 1-21, May.
    2. N. Bourgeois & A. Giannakos & G. Lucarelli & I. Milis & V. T. Paschos & O. Pottié, 2012. "The max quasi-independent set problem," Journal of Combinatorial Optimization, Springer, vol. 23(1), pages 94-117, January.
    3. Bourjolly, Jean-Marie & Laporte, Gilbert & Pesant, Gilles, 2002. "An exact algorithm for the maximum k-club problem in an undirected graph," European Journal of Operational Research, Elsevier, vol. 138(1), pages 21-28, April.
    4. Chams, M. & Hertz, A. & de Werra, D., 1987. "Some experiments with simulated annealing for coloring graphs," European Journal of Operational Research, Elsevier, vol. 32(2), pages 260-266, November.
    5. Jeffrey Pattillo & Nataly Youssef & Sergiy Butenko, 2012. "Clique Relaxation Models in Social Network Analysis," Springer Optimization and Its Applications, in: My T. Thai & Panos M. Pardalos (ed.), Handbook of Optimization in Complex Networks, chapter 0, pages 143-162, Springer.
    6. Lozano, M. & Molina, D. & GarcI´a-MartI´nez, C., 2011. "Iterated greedy for the maximum diversity problem," European Journal of Operational Research, Elsevier, vol. 214(1), pages 31-38, October.
    7. Micael Gallego & Abraham Duarte & Manuel Laguna & Rafael Martí, 2009. "Hybrid heuristics for the maximum diversity problem," Computational Optimization and Applications, Springer, vol. 44(3), pages 411-426, December.
    8. Qinghua Wu & Jin-Kao Hao & Fred Glover, 2012. "Multi-neighborhood tabu search for the maximum weight clique problem," Annals of Operations Research, Springer, vol. 196(1), pages 611-634, July.
    9. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2008. "Modelling Robust Flight-Gate Scheduling as a Clique Partitioning Problem," Transportation Science, INFORMS, vol. 42(3), pages 292-301, August.
    10. Steffen Rebennack & Marcus Oswald & Dirk Oliver Theis & Hanna Seitz & Gerhard Reinelt & Panos M. Pardalos, 2011. "A Branch and Cut solver for the maximum stable set problem," Journal of Combinatorial Optimization, Springer, vol. 21(4), pages 434-457, May.
    11. Wayne Pullan, 2006. "Phased local search for the maximum clique problem," Journal of Combinatorial Optimization, Springer, vol. 12(3), pages 303-323, November.
    12. Martí, Rafael & Gallego, Micael & Duarte, Abraham, 2010. "A branch and bound algorithm for the maximum diversity problem," European Journal of Operational Research, Elsevier, vol. 200(1), pages 36-44, January.
    13. Foad Mahdavi Pajouh & Zhuqi Miao & Balabhaskar Balasundaram, 2014. "A branch-and-bound approach for maximum quasi-cliques," Annals of Operations Research, Springer, vol. 216(1), pages 145-161, May.
    14. Dijkhuizen, G. & Faigle, U., 1993. "A cutting-plane approach to the edge-weighted maximal clique problem," European Journal of Operational Research, Elsevier, vol. 69(1), pages 121-130, August.
    15. M W Carter & D G Johnson, 2001. "Extended clique initialisation in examination timetabling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(5), pages 538-544, May.
    16. R Aringhieri & R Cordone, 2011. "Comparing local search metaheuristics for the maximum diversity problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 266-280, February.
    17. Feng, Bo & Jiang, Zhong-Zhong & Fan, Zhi-Ping & Fu, Na, 2010. "A method for member selection of cross-functional teams using the individual and collaborative performances," European Journal of Operational Research, Elsevier, vol. 203(3), pages 652-661, June.
    18. Francisco Barahona & Andrés Weintraub & Rafael Epstein, 1992. "Habitat Dispersion in Forest Planning and the Stable Set Problem," Operations Research, INFORMS, vol. 40(1-supplem), pages 14-21, February.
    19. Wu, Qinghua & Hao, Jin-Kao, 2013. "A hybrid metaheuristic method for the Maximum Diversity Problem," European Journal of Operational Research, Elsevier, vol. 231(2), pages 452-464.
    20. Park, Kyungchul & Lee, Kyungsik & Park, Sungsoo, 1996. "An extended formulation approach to the edge-weighted maximal clique problem," European Journal of Operational Research, Elsevier, vol. 95(3), pages 671-682, December.
    21. S. S. Ravi & D. J. Rosenkrantz & G. K. Tayi, 1994. "Heuristic and Special Case Algorithms for Dispersion Problems," Operations Research, INFORMS, vol. 42(2), pages 299-310, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Qinghua & Hao, Jin-Kao, 2013. "A hybrid metaheuristic method for the Maximum Diversity Problem," European Journal of Operational Research, Elsevier, vol. 231(2), pages 452-464.
    2. Martí, Rafael & Martínez-Gavara, Anna & Pérez-Peló, Sergio & Sánchez-Oro, Jesús, 2022. "A review on discrete diversity and dispersion maximization from an OR perspective," European Journal of Operational Research, Elsevier, vol. 299(3), pages 795-813.
    3. Seyedmohammadhossein Hosseinian & Dalila B. M. M. Fontes & Sergiy Butenko, 2020. "A Lagrangian Bound on the Clique Number and an Exact Algorithm for the Maximum Edge Weight Clique Problem," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 747-762, July.
    4. Assif Assad & Kusum Deep, 2018. "A heuristic based harmony search algorithm for maximum clique problem," OPSEARCH, Springer;Operational Research Society of India, vol. 55(2), pages 411-433, June.
    5. Aringhieri, Roberto & Cordone, Roberto & Grosso, Andrea, 2015. "Construction and improvement algorithms for dispersion problems," European Journal of Operational Research, Elsevier, vol. 242(1), pages 21-33.
    6. Seyedmohammadhossein Hosseinian & Dalila B. M. M. Fontes & Sergiy Butenko, 2018. "A nonconvex quadratic optimization approach to the maximum edge weight clique problem," Journal of Global Optimization, Springer, vol. 72(2), pages 219-240, October.
    7. Parreño, Francisco & Álvarez-Valdés, Ramón & Martí, Rafael, 2021. "Measuring diversity. A review and an empirical analysis," European Journal of Operational Research, Elsevier, vol. 289(2), pages 515-532.
    8. Yi Chu & Boxiao Liu & Shaowei Cai & Chuan Luo & Haihang You, 2020. "An efficient local search algorithm for solving maximum edge weight clique problem in large graphs," Journal of Combinatorial Optimization, Springer, vol. 39(4), pages 933-954, May.
    9. Lozano, M. & Molina, D. & GarcI´a-MartI´nez, C., 2011. "Iterated greedy for the maximum diversity problem," European Journal of Operational Research, Elsevier, vol. 214(1), pages 31-38, October.
    10. Felix Prause & Kai Hoppmann-Baum & Boris Defourny & Thorsten Koch, 2021. "The maximum diversity assortment selection problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 521-554, June.
    11. Hunting, Marcel & Faigle, Ulrich & Kern, Walter, 2001. "A Lagrangian relaxation approach to the edge-weighted clique problem," European Journal of Operational Research, Elsevier, vol. 131(1), pages 119-131, May.
    12. Anna Martínez-Gavara & Vicente Campos & Manuel Laguna & Rafael Martí, 2017. "Heuristic solution approaches for the maximum minsum dispersion problem," Journal of Global Optimization, Springer, vol. 67(3), pages 671-686, March.
    13. Macambira, Elder Magalhaes & de Souza, Cid Carvalho, 2000. "The edge-weighted clique problem: Valid inequalities, facets and polyhedral computations," European Journal of Operational Research, Elsevier, vol. 123(2), pages 346-371, June.
    14. Zhou, Yi & Lin, Weibo & Hao, Jin-Kao & Xiao, Mingyu & Jin, Yan, 2022. "An effective branch-and-bound algorithm for the maximum s-bundle problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 27-39.
    15. Sergey Kovalev & Isabelle Chalamon & Fabio J. Petani, 2023. "Maximizing single attribute diversity in group selection," Annals of Operations Research, Springer, vol. 320(1), pages 535-540, January.
    16. Sorensen, Michael M., 2004. "New facets and a branch-and-cut algorithm for the weighted clique problem," European Journal of Operational Research, Elsevier, vol. 154(1), pages 57-70, April.
    17. Bahram Alidaee & Haibo Wang, 2017. "A note on heuristic approach based on UBQP formulation of the maximum diversity problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(1), pages 102-110, January.
    18. San Segundo, Pablo & Coniglio, Stefano & Furini, Fabio & Ljubić, Ivana, 2019. "A new branch-and-bound algorithm for the maximum edge-weighted clique problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 76-90.
    19. Yi Zhou & Jin-Kao Hao & Adrien Goëffon, 2016. "A three-phased local search approach for the clique partitioning problem," Journal of Combinatorial Optimization, Springer, vol. 32(2), pages 469-491, August.
    20. Sinha, Ankur & Das, Arka & Anand, Guneshwar & Jayaswal, Sachin, 2023. "A general purpose exact solution method for mixed integer concave minimization problems," European Journal of Operational Research, Elsevier, vol. 309(3), pages 977-992.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:242:y:2015:i:3:p:693-709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.