IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v272y2019i1d10.1007_s10479-017-2546-8.html
   My bibliography  Save this article

Simulated annealing approach to nurse rostering benchmark and real-world instances

Author

Listed:
  • Frederik Knust

    (Connext Communication GmbH)

  • Lin Xie

    (Leuphana University of Lüneburg)

Abstract

The nurse rostering problem, which addresses the task of assigning a given set of activities to nurses without violating any complex rules, has been studied extensively in the last 40 years. However, in a lot of hospitals the schedules are still created manually, as most of the research has not produced methods and software suitable for a practical application. This paper introduces a novel, flexible problem model, which can be categorized as ASBN|RVNTO|PLG. Two solution methods are implemented, including a MIP model to compute good bounds for the test instances and a heuristic method using the simulated annealing algorithm for practical use. Both methods are tested on the available benchmark instances and on the real-world data. The mathematical model and solution methods are integrated into a state-of-the-art duty rostering software, which is primarily used in Germany and Austria.

Suggested Citation

  • Frederik Knust & Lin Xie, 2019. "Simulated annealing approach to nurse rostering benchmark and real-world instances," Annals of Operations Research, Springer, vol. 272(1), pages 187-216, January.
  • Handle: RePEc:spr:annopr:v:272:y:2019:i:1:d:10.1007_s10479-017-2546-8
    DOI: 10.1007/s10479-017-2546-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2546-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2546-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Burke, Edmund K. & Curtois, Tim, 2014. "New approaches to nurse rostering benchmark instances," European Journal of Operational Research, Elsevier, vol. 237(1), pages 71-81.
    2. Cheang, B. & Li, H. & Lim, A. & Rodrigues, B., 2003. "Nurse rostering problems--a bibliographic survey," European Journal of Operational Research, Elsevier, vol. 151(3), pages 447-460, December.
    3. Ernst, A. T. & Jiang, H. & Krishnamoorthy, M. & Sier, D., 2004. "Staff scheduling and rostering: A review of applications, methods and models," European Journal of Operational Research, Elsevier, vol. 153(1), pages 3-27, February.
    4. Dowsland, Kathryn A., 1998. "Nurse scheduling with tabu search and strategic oscillation," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 393-407, April.
    5. Burke, Edmund K. & Li, Jingpeng & Qu, Rong, 2010. "A hybrid model of integer programming and variable neighbourhood search for highly-constrained nurse rostering problems," European Journal of Operational Research, Elsevier, vol. 203(2), pages 484-493, June.
    6. Haroldo G. Santos & Túlio A. M. Toffolo & Rafael A. M. Gomes & Sabir Ribas, 2016. "Integer programming techniques for the nurse rostering problem," Annals of Operations Research, Springer, vol. 239(1), pages 225-251, April.
    7. Paola Cappanera & Giorgio Gallo, 2004. "A Multicommodity Flow Approach to the Crew Rostering Problem," Operations Research, INFORMS, vol. 52(4), pages 583-596, August.
    8. Deborah L. Kellogg & Steven Walczak, 2007. "Nurse Scheduling: From Academia to Implementation or Not?," Interfaces, INFORMS, vol. 37(4), pages 355-369, August.
    9. B. Maenhout & M. Vanhoucke, 2008. "Branching Strategies in a Branch-and-Price Approach for a Multiple Objective Nurse Scheduling Problem," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 08/495, Ghent University, Faculty of Economics and Business Administration.
    10. Burke, Edmund K. & Curtois, Timothy & Post, Gerhard & Qu, Rong & Veltman, Bart, 2008. "A hybrid heuristic ordering and variable neighbourhood search for the nurse rostering problem," European Journal of Operational Research, Elsevier, vol. 188(2), pages 330-341, July.
    11. Edmund K. Burke & Timothy Curtois & Rong Qu & Greet Vanden Berghe, 2013. "A Time Predefined Variable Depth Search for Nurse Rostering," INFORMS Journal on Computing, INFORMS, vol. 25(3), pages 411-419, August.
    12. Valouxis, Christos & Gogos, Christos & Goulas, George & Alefragis, Panayiotis & Housos, Efthymios, 2012. "A systematic two phase approach for the nurse rostering problem," European Journal of Operational Research, Elsevier, vol. 219(2), pages 425-433.
    13. Lü, Zhipeng & Hao, Jin-Kao, 2012. "Adaptive neighborhood search for nurse rostering," European Journal of Operational Research, Elsevier, vol. 218(3), pages 865-876.
    14. Burak Bilgin & Patrick Causmaecker & Benoît Rossie & Greet Vanden Berghe, 2012. "Local search neighbourhoods for dealing with a novel nurse rostering model," Annals of Operations Research, Springer, vol. 194(1), pages 33-57, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paola Cappanera & Filippo Visintin & Roberta Rossi, 2022. "The emergency department physician rostering problem: obtaining equitable solutions via network optimization," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 916-959, December.
    2. Safae Er-Rbib & Guy Desaulniers & Issmail Elhallaoui & Patrick Munroe, 2021. "Preference-based and cyclic bus driver rostering problem with fixed days off," Public Transport, Springer, vol. 13(2), pages 251-286, June.
    3. Kjartan Kastet Klyve & Ilankaikone Senthooran & Mark Wallace, 2023. "Nurse rostering with fatigue modelling," Health Care Management Science, Springer, vol. 26(1), pages 21-45, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    2. Elín Björk Böðvarsdóttir & Niels-Christian Fink Bagger & Laura Elise Høffner & Thomas J. R. Stidsen, 2022. "A flexible mixed integer programming-based system for real-world nurse rostering," Journal of Scheduling, Springer, vol. 25(1), pages 59-88, February.
    3. Florian Mischek & Nysret Musliu, 2019. "Integer programming model extensions for a multi-stage nurse rostering problem," Annals of Operations Research, Springer, vol. 275(1), pages 123-143, April.
    4. Rahimian, Erfan & Akartunalı, Kerem & Levine, John, 2017. "A hybrid Integer Programming and Variable Neighbourhood Search algorithm to solve Nurse Rostering Problems," European Journal of Operational Research, Elsevier, vol. 258(2), pages 411-423.
    5. Lai, David S.W. & Leung, Janny M.Y. & Dullaert, Wout & Marques, Inês, 2020. "A graph-based formulation for the shift rostering problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 285-300.
    6. Valouxis, Christos & Gogos, Christos & Goulas, George & Alefragis, Panayiotis & Housos, Efthymios, 2012. "A systematic two phase approach for the nurse rostering problem," European Journal of Operational Research, Elsevier, vol. 219(2), pages 425-433.
    7. Vanhoucke, Mario & Maenhout, Broos, 2009. "On the characterization and generation of nurse scheduling problem instances," European Journal of Operational Research, Elsevier, vol. 196(2), pages 457-467, July.
    8. Sophie Veldhoven & Gerhard Post & Egbert Veen & Tim Curtois, 2016. "An assessment of a days off decomposition approach to personnel shift scheduling," Annals of Operations Research, Springer, vol. 239(1), pages 207-223, April.
    9. Suk Ho Jin & Ho Yeong Yun & Suk Jae Jeong & Kyung Sup Kim, 2017. "Hybrid and Cooperative Strategies Using Harmony Search and Artificial Immune Systems for Solving the Nurse Rostering Problem," Sustainability, MDPI, vol. 9(7), pages 1-19, June.
    10. Ran Liu & Xiaolan Xie, 2018. "Physician Staffing for Emergency Departments with Time-Varying Demand," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 588-607, August.
    11. Topaloglu, Seyda, 2009. "A shift scheduling model for employees with different seniority levels and an application in healthcare," European Journal of Operational Research, Elsevier, vol. 198(3), pages 943-957, November.
    12. Burke, Edmund K. & Curtois, Tim, 2014. "New approaches to nurse rostering benchmark instances," European Journal of Operational Research, Elsevier, vol. 237(1), pages 71-81.
    13. Federico Della Croce & Fabio Salassa, 2014. "A variable neighborhood search based matheuristic for nurse rostering problems," Annals of Operations Research, Springer, vol. 218(1), pages 185-199, July.
    14. Toni I. Wickert & Alberto F. Kummer Neto & Márcio M. Boniatti & Luciana S. Buriol, 2021. "An integer programming approach for the physician rostering problem," Annals of Operations Research, Springer, vol. 302(2), pages 363-390, July.
    15. Meignan, David & Knust, Sigrid, 2019. "A neutrality-based iterated local search for shift scheduling optimization and interactive reoptimization," European Journal of Operational Research, Elsevier, vol. 279(2), pages 320-334.
    16. Emir Demirović & Nysret Musliu & Felix Winter, 2019. "Modeling and solving staff scheduling with partial weighted maxSAT," Annals of Operations Research, Springer, vol. 275(1), pages 79-99, April.
    17. B Maenhout & M Vanhoucke, 2009. "The impact of incorporating nurse-specific characteristics in a cyclical scheduling approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1683-1698, December.
    18. Edmund Burke & Jingpeng Li & Rong Qu, 2012. "A Pareto-based search methodology for multi-objective nurse scheduling," Annals of Operations Research, Springer, vol. 196(1), pages 91-109, July.
    19. David D. Cho & Kurt M. Bretthauer & Jan Schoenfelder, 2023. "Patient-to-nurse ratios: Balancing quality, nurse turnover, and cost," Health Care Management Science, Springer, vol. 26(4), pages 807-826, December.
    20. Paola Cappanera & Filippo Visintin & Roberta Rossi, 2022. "The emergency department physician rostering problem: obtaining equitable solutions via network optimization," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 916-959, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:272:y:2019:i:1:d:10.1007_s10479-017-2546-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.