IDEAS home Printed from https://ideas.repec.org/a/spr/pubtra/v13y2021i2d10.1007_s12469-021-00268-y.html
   My bibliography  Save this article

Preference-based and cyclic bus driver rostering problem with fixed days off

Author

Listed:
  • Safae Er-Rbib

    (GERAD & Polytechnique de Montréal)

  • Guy Desaulniers

    (GERAD & Polytechnique de Montréal)

  • Issmail Elhallaoui

    (GERAD & Polytechnique de Montréal)

  • Patrick Munroe

    (GERAD & Polytechnique de Montréal)

Abstract

Given a set of predefined duties and groups of drivers, the duty assignment problem with group-based driver preferences (DAPGDP) aims at building rosters that cover all the duties over a predetermined cyclic horizon while respecting a set of rules (hard constraints), balancing the workload between the drivers and satisfying as much as possible the driver preferences (soft constraints). In this paper, we first model the DAPGDP as a mixed-integer linear program that minimizes the number of preference violations while maintaining the workload balance of the solutions within a certain margin relative to the optimal one. Since this model is hard to solve for large instances, we propose two new matheuristics. The first one restricts the search space by preassigning duties to rosters based on an optimal solution to the duty assignment problem with fixed days off. The second algorithm makes use of a set partitioning problem to decompose rosters consisting of a large number of positions into subrosters of smaller sizes. In a series of computational experiments conducted on real-world instances, we show that these matheuristics can be used to produce high-quality solutions for large instances of the DAPGDP (i.e., with up to 333 drivers and 1509 duties) within relatively short computational times.

Suggested Citation

  • Safae Er-Rbib & Guy Desaulniers & Issmail Elhallaoui & Patrick Munroe, 2021. "Preference-based and cyclic bus driver rostering problem with fixed days off," Public Transport, Springer, vol. 13(2), pages 251-286, June.
  • Handle: RePEc:spr:pubtra:v:13:y:2021:i:2:d:10.1007_s12469-021-00268-y
    DOI: 10.1007/s12469-021-00268-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12469-021-00268-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12469-021-00268-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mesquita, Marta & Moz, Margarida & Paias, Ana & Pato, Margarida, 2015. "A decompose-and-fix heuristic based on multi-commodity flow models for driver rostering with days-off pattern," European Journal of Operational Research, Elsevier, vol. 245(2), pages 423-437.
    2. A.T. Ernst & H. Jiang & M. Krishnamoorthy & B. Owens & D. Sier, 2004. "An Annotated Bibliography of Personnel Scheduling and Rostering," Annals of Operations Research, Springer, vol. 127(1), pages 21-144, March.
    3. Ernst, A. T. & Jiang, H. & Krishnamoorthy, M. & Sier, D., 2004. "Staff scheduling and rostering: A review of applications, methods and models," European Journal of Operational Research, Elsevier, vol. 153(1), pages 3-27, February.
    4. Erhard, Melanie & Schoenfelder, Jan & Fügener, Andreas & Brunner, Jens O., 2018. "State of the art in physician scheduling," European Journal of Operational Research, Elsevier, vol. 265(1), pages 1-18.
    5. Silke Jütte & Daniel Müller & Ulrich W. Thonemann, 2017. "Optimizing railway crew schedules with fairness preferences," Journal of Scheduling, Springer, vol. 20(1), pages 43-55, February.
    6. Frederik Knust & Lin Xie, 2019. "Simulated annealing approach to nurse rostering benchmark and real-world instances," Annals of Operations Research, Springer, vol. 272(1), pages 187-216, January.
    7. ManMohan Sodhi & Stephen Norris, 2004. "A Flexible, Fast, and Optimal Modeling Approach Applied to Crew Rostering at London Underground," Annals of Operations Research, Springer, vol. 127(1), pages 259-281, March.
    8. Margarida Moz & Ana Respício & Margarida Vaz Pato, 2009. "Bi-objective evolutionary heuristics for bus driver rostering," Public Transport, Springer, vol. 1(3), pages 189-210, August.
    9. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    10. Hadi W. Purnomo & Jonathan F. Bard, 2007. "Cyclic preference scheduling for nurses using branch and price," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(2), pages 200-220, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paola Cappanera & Filippo Visintin & Roberta Rossi, 2022. "The emergency department physician rostering problem: obtaining equitable solutions via network optimization," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 916-959, December.
    2. David Rea & Craig Froehle & Suzanne Masterson & Brian Stettler & Gregory Fermann & Arthur Pancioli, 2021. "Unequal but Fair: Incorporating Distributive Justice in Operational Allocation Models," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2304-2320, July.
    3. Lotfi Hidri & Achraf Gazdar & Mohammed M. Mabkhot, 2020. "Optimized Procedure to Schedule Physicians in an Intensive Care Unit: A Case Study," Mathematics, MDPI, vol. 8(11), pages 1-24, November.
    4. Tristan Becker & Maximilian Schiffer & Grit Walther, 2022. "A General Branch-and-Cut Framework for Rotating Workforce Scheduling," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1548-1564, May.
    5. Damcı-Kurt, Pelin & Zhang, Minjiao & Marentay, Brian & Govind, Nirmal, 2019. "Improving physician schedules by leveraging equalization: Cases from hospitals in U.S," Omega, Elsevier, vol. 85(C), pages 182-193.
    6. Wolbeck, Lena Antonia, 2019. "Fairness aspects in personnel scheduling," Discussion Papers 2019/16, Free University Berlin, School of Business & Economics.
    7. Heil, Julia & Hoffmann, Kirsten & Buscher, Udo, 2020. "Railway crew scheduling: Models, methods and applications," European Journal of Operational Research, Elsevier, vol. 283(2), pages 405-425.
    8. F. Zeynep Sargut & Caner Altuntaş & Dilek Cetin Tulazoğlu, 2017. "Multi-objective integrated acyclic crew rostering and vehicle assignment problem in public bus transportation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1071-1096, October.
    9. Jaime Miranda & Pablo A. Rey & Antoine Sauré & Richard Weber, 2018. "Metro Uses a Simulation-Optimization Approach to Improve Fare-Collection Shift Scheduling," Interfaces, INFORMS, vol. 48(6), pages 529-542, November.
    10. Caballini, Claudia & Paolucci, Massimo, 2020. "A rostering approach to minimize health risks for workers: An application to a container terminal in the Italian port of Genoa," Omega, Elsevier, vol. 95(C).
    11. Young-Chae Hong & Amy Cohn & Stephen Gorga & Edmond O’Brien & William Pozehl & Jennifer Zank, 2019. "Using Optimization Techniques and Multidisciplinary Collaboration to Solve a Challenging Real-World Residency Scheduling Problem," Interfaces, INFORMS, vol. 49(3), pages 201-212, May.
    12. Banu Sungur & Cemal Özgüven & Yasemin Kariper, 2017. "Shift scheduling with break windows, ideal break periods, and ideal waiting times," Flexible Services and Manufacturing Journal, Springer, vol. 29(2), pages 203-222, June.
    13. Jan Schoenfelder & Christian Pfefferlen, 2018. "Decision Support for the Physician Scheduling Process at a German Hospital," Service Science, INFORMS, vol. 10(3), pages 215-229, September.
    14. Andreas Fügener & Jens O. Brunner, 2019. "Planning for Overtime: The Value of Shift Extensions in Physician Scheduling," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 732-744, October.
    15. Breugem, T. & Dollevoet, T.A.B. & Huisman, D., 2017. "Is Equality always desirable?," Econometric Institute Research Papers EI2017-30, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Chapados, Nicolas & Joliveau, Marc & L’Ecuyer, Pierre & Rousseau, Louis-Martin, 2014. "Retail store scheduling for profit," European Journal of Operational Research, Elsevier, vol. 239(3), pages 609-624.
    17. Lusby, Richard Martin & Range, Troels Martin & Larsen, Jesper, 2016. "A Benders decomposition-based matheuristic for the Cardinality Constrained Shift Design Problem," European Journal of Operational Research, Elsevier, vol. 254(2), pages 385-397.
    18. Sanja Petrovic, 2019. "“You have to get wet to learn how to swim” applied to bridging the gap between research into personnel scheduling and its implementation in practice," Annals of Operations Research, Springer, vol. 275(1), pages 161-179, April.
    19. Kraul, Sebastian & Fügener, Andreas & Brunner, Jens O. & Blobner, Manfred, 2019. "A robust framework for task-related resident scheduling," European Journal of Operational Research, Elsevier, vol. 276(2), pages 656-675.
    20. Melissa R. Bowers & Charles E. Noon & Wei Wu & J. Kirk Bass, 2016. "Neonatal Physician Scheduling at the University of Tennessee Medical Center," Interfaces, INFORMS, vol. 46(2), pages 168-182, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pubtra:v:13:y:2021:i:2:d:10.1007_s12469-021-00268-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.