IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v26y2023i4d10.1007_s10729-023-09659-y.html
   My bibliography  Save this article

Patient-to-nurse ratios: Balancing quality, nurse turnover, and cost

Author

Listed:
  • David D. Cho

    (California State University, Fullerton)

  • Kurt M. Bretthauer

    (Kelley School of Business, Indiana University)

  • Jan Schoenfelder

    (University of Augsburg
    Lancaster University Leipzig)

Abstract

We consider the problem of setting appropriate patient-to-nurse ratios in a hospital, an issue that is both complex and widely debated. There has been only limited effort to take advantage of the extensive empirical results from the medical literature to help construct analytical decision models for developing upper limits on patient-to-nurse ratios that are more patient- and nurse-oriented. For example, empirical studies have shown that each additional patient assigned per nurse in a hospital is associated with increases in mortality rates, length-of-stay, and nurse burnout. Failure to consider these effects leads to disregarded potential cost savings resulting from providing higher quality of care and fewer nurse turnovers. Thus, we present a nurse staffing model that incorporates patient length-of-stay, nurse turnover, and costs related to patient-to-nurse ratios. We present results based on data collected from three participating hospitals, the American Hospital Association (AHA), and the California Office of Statewide Health Planning and Development (OSHPD). By incorporating patient and nurse outcomes, we show that lower patient-to-nurse ratios can potentially provide hospitals with financial benefits in addition to improving the quality of care. Furthermore, our results show that higher policy patient-to-nurse ratio upper limits may not be as harmful in smaller hospitals, but lower policy patient-to-nurse ratios may be necessary for larger hospitals. These results suggest that a “one ratio fits all” patient-to-nurse ratio is not optimal. A preferable policy would be to allow the ratio to be hospital-dependent.

Suggested Citation

  • David D. Cho & Kurt M. Bretthauer & Jan Schoenfelder, 2023. "Patient-to-nurse ratios: Balancing quality, nurse turnover, and cost," Health Care Management Science, Springer, vol. 26(4), pages 807-826, December.
  • Handle: RePEc:kap:hcarem:v:26:y:2023:i:4:d:10.1007_s10729-023-09659-y
    DOI: 10.1007/s10729-023-09659-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-023-09659-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-023-09659-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsai, Shing Chih & Yeh, Yingchieh & Kuo, Chen Yun, 2021. "Efficient optimization algorithms for surgical scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 293(2), pages 579-593.
    2. Jagpreet Chhatwal & Oguzhan Alagoz & Elizabeth S. Burnside, 2010. "Optimal Breast Biopsy Decision-Making Based on Mammographic Features and Demographic Factors," Operations Research, INFORMS, vol. 58(6), pages 1577-1591, December.
    3. Farouq Halawa & Sreenath Chalil Madathil & Alice Gittler & Mohammad T. Khasawneh, 2020. "Advancing evidence-based healthcare facility design: a systematic literature review," Health Care Management Science, Springer, vol. 23(3), pages 453-480, September.
    4. Sina Faridimehr & Saravanan Venkatachalam & Ratna Babu Chinnam, 2021. "Managing access to primary care clinics using scheduling templates," Health Care Management Science, Springer, vol. 24(3), pages 482-498, September.
    5. Burke, Edmund K. & Curtois, Tim, 2014. "New approaches to nurse rostering benchmark instances," European Journal of Operational Research, Elsevier, vol. 237(1), pages 71-81.
    6. Legrain, Antoine & Omer, Jérémy & Rosat, Samuel, 2020. "An online stochastic algorithm for a dynamic nurse scheduling problem," European Journal of Operational Research, Elsevier, vol. 285(1), pages 196-210.
    7. Menel Benzaid & Nadia Lahrichi & Louis-Martin Rousseau, 2020. "Chemotherapy appointment scheduling and daily outpatient–nurse assignment," Health Care Management Science, Springer, vol. 23(1), pages 34-50, March.
    8. Pavinee Rerkjirattikal & Van-Nam Huynh & Sun Olapiriyakul & Thepchai Supnithi, 2020. "A Goal Programming Approach to Nurse Scheduling with Individual Preference Satisfaction," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-11, November.
    9. Brian T. Denton & Andrew J. Miller & Hari J. Balasubramanian & Todd R. Huschka, 2010. "Optimal Allocation of Surgery Blocks to Operating Rooms Under Uncertainty," Operations Research, INFORMS, vol. 58(4-part-1), pages 802-816, August.
    10. Cheang, B. & Li, H. & Lim, A. & Rodrigues, B., 2003. "Nurse rostering problems--a bibliographic survey," European Journal of Operational Research, Elsevier, vol. 151(3), pages 447-460, December.
    11. Marcelo Olivares & Christian Terwiesch & Lydia Cassorla, 2008. "Structural Estimation of the Newsvendor Model: An Application to Reserving Operating Room Time," Management Science, INFORMS, vol. 54(1), pages 41-55, January.
    12. Wallace J. Hopp & Eylem Tekin & Mark P. Van Oyen, 2004. "Benefits of Skill Chaining in Serial Production Lines with Cross-Trained Workers," Management Science, INFORMS, vol. 50(1), pages 83-98, January.
    13. Wolbeck, Lena & Kliewer, Natalia & Marques, Inês, 2020. "Fair shift change penalization scheme for nurse rescheduling problems," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1121-1135.
    14. Wen-Ya Wang & Diwakar Gupta, 2011. "Adaptive Appointment Systems with Patient Preferences," Manufacturing & Service Operations Management, INFORMS, vol. 13(3), pages 373-389, July.
    15. Shehadeh, Karmel S. & Padman, Rema, 2021. "A distributionally robust optimization approach for stochastic elective surgery scheduling with limited intensive care unit capacity," European Journal of Operational Research, Elsevier, vol. 290(3), pages 901-913.
    16. Gregory Dobson & Edieal Pinker & R. Lawrence Van Horn, 2009. "Division of Labor in Medical Office Practices," Manufacturing & Service Operations Management, INFORMS, vol. 11(3), pages 525-537, May.
    17. Papanicolas, Irene & Woskie, Liana R. & Jha, Ashish K., 2018. "Health care spending in the United States and other high-income countries," LSE Research Online Documents on Economics 87362, London School of Economics and Political Science, LSE Library.
    18. Linda V. Green & Sergei Savin, 2008. "Reducing Delays for Medical Appointments: A Queueing Approach," Operations Research, INFORMS, vol. 56(6), pages 1526-1538, December.
    19. Schoenfelder, Jan & Bretthauer, Kurt M. & Wright, P. Daniel & Coe, Edwin, 2020. "Nurse scheduling with quick-response methods: Improving hospital performance, nurse workload, and patient experience," European Journal of Operational Research, Elsevier, vol. 283(1), pages 390-403.
    20. Marion S. Rauner & Walter J. Gutjahr & Kurt Heidenberger & Joachim Wagner & Joseph Pasia, 2010. "Dynamic Policy Modeling for Chronic Diseases: Metaheuristic-Based Identification of Pareto-Optimal Screening Strategies," Operations Research, INFORMS, vol. 58(5), pages 1269-1286, October.
    21. Edieal J. Pinker & Robert A. Shumsky, 2000. "The Efficiency-Quality Trade-Off of Cross-Trained Workers," Manufacturing & Service Operations Management, INFORMS, vol. 2(1), pages 32-48, July.
    22. Gnanlet, Adelina & Gilland, Wendell G., 2014. "Impact of productivity on cross-training configurations and optimal staffing decisions in hospitals," European Journal of Operational Research, Elsevier, vol. 238(1), pages 254-269.
    23. Steven Thompson & Manuel Nunez & Robert Garfinkel & Matthew D. Dean, 2009. "OR Practice---Efficient Short-Term Allocation and Reallocation of Patients to Floors of a Hospital During Demand Surges," Operations Research, INFORMS, vol. 57(2), pages 261-273, April.
    24. Haizhen Lin, 2014. "Revisiting the relationship between nurse staffing and quality of care in nursing homes: An instrumental variables approach," Working Papers 2014-01, Indiana University, Kelley School of Business, Department of Business Economics and Public Policy.
    25. Hamid Mousavi & Soroush Avakh Darestani & Parham Azimi, 2021. "An artificial neural network based mathematical model for a stochastic health care facility location problem," Health Care Management Science, Springer, vol. 24(3), pages 499-514, September.
    26. Francis de Véricourt & Otis B. Jennings, 2011. "Nurse Staffing in Medical Units: A Queueing Perspective," Operations Research, INFORMS, vol. 59(6), pages 1320-1331, December.
    27. Fred Easton, 2011. "Cross-training performance in flexible labor scheduling environments," IISE Transactions, Taylor & Francis Journals, vol. 43(8), pages 589-603.
    28. Natalia Yankovic & Linda V. Green, 2011. "Identifying Good Nursing Levels: A Queuing Approach," Operations Research, INFORMS, vol. 59(4), pages 942-955, August.
    29. Gerard M. Campbell, 1999. "Cross-Utilization of Workers Whose Capabilities Differ," Management Science, INFORMS, vol. 45(5), pages 722-732, May.
    30. Valouxis, Christos & Gogos, Christos & Goulas, George & Alefragis, Panayiotis & Housos, Efthymios, 2012. "A systematic two phase approach for the nurse rostering problem," European Journal of Operational Research, Elsevier, vol. 219(2), pages 425-433.
    31. Donald K. K. Lee & Stefanos A. Zenios, 2009. "Optimal Capacity Overbooking for the Regular Treatment of Chronic Conditions," Operations Research, INFORMS, vol. 57(4), pages 852-865, August.
    32. Yang-Kuei Lin & Yin-Yi Chou, 2020. "A hybrid genetic algorithm for operating room scheduling," Health Care Management Science, Springer, vol. 23(2), pages 249-263, June.
    33. Yuta Kanai & Hideaki Takagi, 2021. "Markov chain analysis for the neonatal inpatient flow in a hospital," Health Care Management Science, Springer, vol. 24(1), pages 92-116, March.
    34. Avishai Mandelbaum & Petar Momčilović & Yulia Tseytlin, 2012. "On Fair Routing from Emergency Departments to Hospital Wards: QED Queues with Heterogeneous Servers," Management Science, INFORMS, vol. 58(7), pages 1273-1291, July.
    35. Gregory Dobson & Hsiao-Hui Lee & Edieal Pinker, 2010. "A Model of ICU Bumping," Operations Research, INFORMS, vol. 58(6), pages 1564-1576, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schoenfelder, Jan & Bretthauer, Kurt M. & Wright, P. Daniel & Coe, Edwin, 2020. "Nurse scheduling with quick-response methods: Improving hospital performance, nurse workload, and patient experience," European Journal of Operational Research, Elsevier, vol. 283(1), pages 390-403.
    2. Gregory Dobson & Hsiao-Hui Lee & Arvind Sainathan & Vera Tilson, 2012. "A Queueing Model to Evaluate the Impact of Patient "Batching" on Throughput and Flow Time in a Medical Teaching Facility," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 584-599, October.
    3. Jingui Xie & Weifen Zhuang & Marcus Ang & Mabel C. Chou & Li Luo & David D. Yao, 2021. "Analytics for Hospital Resource Planning—Two Case Studies," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1863-1885, June.
    4. Carri W. Chan & Vivek F. Farias & Gabriel J. Escobar, 2017. "The Impact of Delays on Service Times in the Intensive Care Unit," Management Science, INFORMS, vol. 63(7), pages 2049-2072, July.
    5. Pengyi Shi & Mabel C. Chou & J. G. Dai & Ding Ding & Joe Sim, 2016. "Models and Insights for Hospital Inpatient Operations: Time-Dependent ED Boarding Time," Management Science, INFORMS, vol. 62(1), pages 1-28, January.
    6. Wright, P. Daniel & Mahar, Stephen, 2013. "Centralized nurse scheduling to simultaneously improve schedule cost and nurse satisfaction," Omega, Elsevier, vol. 41(6), pages 1042-1052.
    7. Henao, César Augusto & Ferrer, Juan Carlos & Muñoz, Juan Carlos & Vera, Jorge, 2016. "Multiskilling with closed chains in a service industry: A robust optimization approach," International Journal of Production Economics, Elsevier, vol. 179(C), pages 166-178.
    8. Seokjun Youn & H. Neil Geismar & Michael Pinedo, 2022. "Planning and scheduling in healthcare for better care coordination: Current understanding, trending topics, and future opportunities," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4407-4423, December.
    9. Gnanlet, Adelina & Gilland, Wendell G., 2014. "Impact of productivity on cross-training configurations and optimal staffing decisions in hospitals," European Journal of Operational Research, Elsevier, vol. 238(1), pages 254-269.
    10. Frederik Knust & Lin Xie, 2019. "Simulated annealing approach to nurse rostering benchmark and real-world instances," Annals of Operations Research, Springer, vol. 272(1), pages 187-216, January.
    11. Brusco, Michael J., 2015. "A bicriterion algorithm for the allocation of cross-trained workers based on operational and human resource objectives," European Journal of Operational Research, Elsevier, vol. 247(1), pages 46-59.
    12. Fernanda Campello & Armann Ingolfsson & Robert A. Shumsky, 2017. "Queueing Models of Case Managers," Management Science, INFORMS, vol. 63(3), pages 882-900, March.
    13. Fügener, Andreas & Pahr, Alexander & Brunner, Jens O., 2018. "Mid-term nurse rostering considering cross-training effects," International Journal of Production Economics, Elsevier, vol. 196(C), pages 176-187.
    14. Carmen, Raïsa & Van Nieuwenhuyse, Inneke & Van Houdt, Benny, 2018. "Inpatient boarding in emergency departments: Impact on patient delays and system capacity," European Journal of Operational Research, Elsevier, vol. 271(3), pages 953-967.
    15. Rajeswari Muniyan & Rajakumar Ramalingam & Sultan S. Alshamrani & Durgaprasad Gangodkar & Ankur Dumka & Rajesh Singh & Anita Gehlot & Mamoon Rashid, 2022. "Artificial Bee Colony Algorithm with Nelder–Mead Method to Solve Nurse Scheduling Problem," Mathematics, MDPI, vol. 10(15), pages 1-24, July.
    16. Sophie Veldhoven & Gerhard Post & Egbert Veen & Tim Curtois, 2016. "An assessment of a days off decomposition approach to personnel shift scheduling," Annals of Operations Research, Springer, vol. 239(1), pages 207-223, April.
    17. Mohammad Heydari & Kin Keung Lai & Yanan Fan & Xiaoyang Li, 2022. "A Review of Emergency and Disaster Management in the Process of Healthcare Operation Management for Improving Hospital Surgical Intake Capacity," Mathematics, MDPI, vol. 10(15), pages 1-34, August.
    18. Fernanda Campello & Armann Ingolfsson & Robert A. Shumsky, 2018. "Queueing Models of Case Managers," Management Science, INFORMS, vol. 64(1), pages 7-26, January.
    19. Sandeep Rath & Kumar Rajaram & Aman Mahajan, 2017. "Integrated Anesthesiologist and Room Scheduling for Surgeries: Methodology and Application," Operations Research, INFORMS, vol. 65(6), pages 1460-1478, December.
    20. Silviya Valeva & Guodong Pang & Andrew J. Schaefer & Gilles Clermont, 2023. "Acuity-Based Allocation of ICU-Downstream Beds with Flexible Staffing," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 403-422, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:26:y:2023:i:4:d:10.1007_s10729-023-09659-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.