IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v263y2018i1d10.1007_s10479-017-2745-3.html
   My bibliography  Save this article

Joint optimization of ordering and maintenance with condition monitoring data

Author

Listed:
  • Ramin Moghaddass

    (University of Miami)

  • Şeyda Ertekin

    (Middle East Technical University
    Massachusetts Institute of Technology)

Abstract

We study a single-unit deteriorating system under condition monitoring for which collected signals are only stochastically related to the actual level of degradation. Failure replacement is costlier than preventive replacement and there is a delay (lead time) between the initiation of the maintenance setup and the actual maintenance, which is closely related to the process of spare parts inventory and/or maintenance setup activities. We develop a dynamic control policy with a two-dimensional decision space, referred to as a warning-replacement policy, which jointly optimizes the replacement time and replacement setup initiation point (maintenance ordering time) using online condition monitoring data. The optimization criterion is the long-run expected average cost per unit of operation time. We develop the optimal structure of such a dynamic policy using a partially observable semi-Markov decision process and provide some important results with respect to optimality and monotone properties of the optimal policy. We also discuss how to find the optimal values of observation/inspection interval and lead time using historical condition monitoring data. Illustrative numerical examples are provided to show thatour joint policy outperforms conventional suboptimal policies commonly used in theliterature.

Suggested Citation

  • Ramin Moghaddass & Şeyda Ertekin, 2018. "Joint optimization of ordering and maintenance with condition monitoring data," Annals of Operations Research, Springer, vol. 263(1), pages 271-310, April.
  • Handle: RePEc:spr:annopr:v:263:y:2018:i:1:d:10.1007_s10479-017-2745-3
    DOI: 10.1007/s10479-017-2745-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2745-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2745-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhaoqiang Wang & Changhua Hu & Wenbin Wang & Xiangyu Kong & Wei Zhang, 2015. "A prognostics-based spare part ordering and system replacement policy for a deteriorating system subjected to a random lead time," International Journal of Production Research, Taylor & Francis Journals, vol. 53(15), pages 4511-4527, August.
    2. Donald Rosenfield, 1976. "Markovian Deterioration with Uncertain Information," Operations Research, INFORMS, vol. 24(1), pages 141-155, February.
    3. Xiang Wu & Sarah M. Ryan, 2014. "Joint Optimization of Asset and Inventory Management in a Product–Service System," The Engineering Economist, Taylor & Francis Journals, vol. 59(2), pages 91-115, April.
    4. Godoy, David R. & Pascual, Rodrigo & Knights, Peter, 2013. "Critical spare parts ordering decisions using conditional reliability and stochastic lead time," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 199-206.
    5. Dong, Ming & He, David, 2007. "Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis," European Journal of Operational Research, Elsevier, vol. 178(3), pages 858-878, May.
    6. Michael Jong Kim & Viliam Makis, 2013. "Joint Optimization of Sampling and Control of Partially Observable Failing Systems," Operations Research, INFORMS, vol. 61(3), pages 777-790, June.
    7. Wang, Ling & Chu, Jian & Mao, Weijie, 2009. "A condition-based replacement and spare provisioning policy for deteriorating systems with uncertain deterioration to failure," European Journal of Operational Research, Elsevier, vol. 194(1), pages 184-205, April.
    8. Panagiotidou, Sofia, 2014. "Joint optimization of spare parts ordering and maintenance policies for multiple identical items subject to silent failures," European Journal of Operational Research, Elsevier, vol. 235(1), pages 300-314.
    9. Rosmaini Ahmad & Shahrul Kamaruddin, 2012. "A review of condition-based maintenance decision-making," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 6(5), pages 519-541.
    10. Donald Rosenfield, 1976. "Markovian Deterioration With Uncertain Information — A More General Model," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 23(3), pages 389-405, September.
    11. Yeh, Ruey Huei, 1997. "Optimal inspection and replacement policies for multi-state deteriorating systems," European Journal of Operational Research, Elsevier, vol. 96(2), pages 248-259, January.
    12. Van Horenbeek, Adriaan & Buré, Jasmine & Cattrysse, Dirk & Pintelon, Liliane & Vansteenwegen, Pieter, 2013. "Joint maintenance and inventory optimization systems: A review," International Journal of Production Economics, Elsevier, vol. 143(2), pages 499-508.
    13. C. Teresa Lam & R. H. Yeh, 1994. "Optimal replacement policies for multistate deteriorating systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(3), pages 303-315, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    2. Liu, Xinbao & Yang, Tianji & Pei, Jun & Liao, Haitao & Pohl, Edward A., 2019. "Replacement and inventory control for a multi-customer product service system with decreasing replacement costs," European Journal of Operational Research, Elsevier, vol. 273(2), pages 561-574.
    3. Chiel van Oosterom & Lisa M. Maillart & Jeffrey P. Kharoufeh, 2017. "Optimal maintenance policies for a safety‐critical system and its deteriorating sensor," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(5), pages 399-417, August.
    4. Zhang, Xiaohong & Zeng, Jianchao, 2017. "Joint optimization of condition-based opportunistic maintenance and spare parts provisioning policy in multiunit systems," European Journal of Operational Research, Elsevier, vol. 262(2), pages 479-498.
    5. Alaa H. Elwany & Nagi Z. Gebraeel & Lisa M. Maillart, 2011. "Structured Replacement Policies for Components with Complex Degradation Processes and Dedicated Sensors," Operations Research, INFORMS, vol. 59(3), pages 684-695, June.
    6. Zheng, Meimei & Ye, Hongqing & Wang, Dong & Pan, Ershun, 2021. "Joint Optimization of Condition-Based Maintenance and Spare Parts Orders for Multi-Unit Systems with Dual Sourcing," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    7. Lin, X. & Basten, R.J.I. & Kranenburg, A.A. & van Houtum, G.J., 2017. "Condition based spare parts supply," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 240-248.
    8. Sleptchenko, Andrei & van der Heijden, Matthieu, 2016. "Joint optimization of redundancy level and spare part inventories," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 64-74.
    9. Zheng, Meimei & Lin, Jie & Xia, Tangbin & Liu, Yu & Pan, Ershun, 2023. "Joint condition-based maintenance and spare provisioning policy for a K-out-of-N system with failures during inspection intervals," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1220-1232.
    10. Wooseung Jang & J. George Shanthikumar, 2002. "Stochastic allocation of inspection capacity to competitive processes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(1), pages 78-94, February.
    11. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    12. Junbo Son & Yeongin Kim & Shiyu Zhou, 2022. "Alerting patients via health information system considering trust-dependent patient adherence," Information Technology and Management, Springer, vol. 23(4), pages 245-269, December.
    13. Nguyen, Kim-Anh & Do, Phuc & Grall, Antoine, 2017. "Joint predictive maintenance and inventory strategy for multi-component systems using Birnbaum’s structural importance," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 249-261.
    14. Poppe, Joeri & Basten, Rob J.I. & Boute, Robert N. & Lambrecht, Marc R., 2017. "Numerical study of inventory management under various maintenance policies," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 262-273.
    15. Yan, Tao & Lei, Yaguo & Wang, Biao & Han, Tianyu & Si, Xiaosheng & Li, Naipeng, 2020. "Joint maintenance and spare parts inventory optimization for multi-unit systems considering imperfect maintenance actions," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    16. Deep, Akash & Zhou, Shiyu & Veeramani, Dharmaraj & Chen, Yong, 2023. "Partially observable Markov decision process-based optimal maintenance planning with time-dependent observations," European Journal of Operational Research, Elsevier, vol. 311(2), pages 533-544.
    17. Lisa M. Maillart & Ludmila Zheltova, 2007. "Structured maintenance policies on interior sample paths," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(6), pages 645-655, September.
    18. Zahedi-Hosseini, Farhad & Scarf, Philip & Syntetos, Aris, 2017. "Joint optimisation of inspection maintenance and spare parts provisioning: a comparative study of inventory policies using simulation and survey data," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 306-316.
    19. Miehling, Erik & Teneketzis, Demosthenis, 2020. "Monotonicity properties for two-action partially observable Markov decision processes on partially ordered spaces," European Journal of Operational Research, Elsevier, vol. 282(3), pages 936-944.
    20. Chen, Nan & Ye, Zhi-Sheng & Xiang, Yisha & Zhang, Linmiao, 2015. "Condition-based maintenance using the inverse Gaussian degradation model," European Journal of Operational Research, Elsevier, vol. 243(1), pages 190-199.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:263:y:2018:i:1:d:10.1007_s10479-017-2745-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.