IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v41y1994i3p303-315.html
   My bibliography  Save this article

Optimal replacement policies for multistate deteriorating systems

Author

Listed:
  • C. Teresa Lam
  • R. H. Yeh

Abstract

We consider state‐age‐dependent replacement policies for a multistate deteriorating system. We assume that operating cost rates and replacement costs are both functions of the underlying states. Replacement times and sojourn times in different states are all state‐dependent random variables. The optimization criterion is to minimize the expected long‐run cost rate. A policy‐improvement algorithm to derive the optimal policy is presented. We show that under reasonable assumptions, the optimal replacement policies have monotonic properties. In particular, when the failure‐rate functions are nonincreasing, or when all the replacement costs and the expected replacement times are independent of state, we show that the optimal policies are only state dependent. Examples are given to illustrate the structure of the optimal policies in the special case when the sojourntime distributions are Weibull. © 1994 John Wiley & Sons, Inc.

Suggested Citation

  • C. Teresa Lam & R. H. Yeh, 1994. "Optimal replacement policies for multistate deteriorating systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(3), pages 303-315, April.
  • Handle: RePEc:wly:navres:v:41:y:1994:i:3:p:303-315
    DOI: 10.1002/1520-6750(199404)41:33.0.CO;2-2
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/1520-6750(199404)41:33.0.CO;2-2
    Download Restriction: no

    File URL: https://libkey.io/10.1002/1520-6750(199404)41:33.0.CO;2-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hanan Luss, 1976. "Maintenance Policies When Deterioration Can be Observed by Inspections," Operations Research, INFORMS, vol. 24(2), pages 359-366, April.
    2. Ciriaco Valdez‐Flores & Richard M. Feldman, 1989. "A survey of preventive maintenance models for stochastically deteriorating single‐unit systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(4), pages 419-446, August.
    3. John J. McCall, 1965. "Maintenance Policies for Stochastically Failing Equipment: A Survey," Management Science, INFORMS, vol. 11(5), pages 493-524, March.
    4. Alan P. Wood, 1988. "Optimal maintenance policies for constantly monitored systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(4), pages 461-471, August.
    5. Ohnishi, Masamitsu & Kawai, Hajime & Mine, Hisashi, 1986. "An optimal inspection and replacement policy under incomplete state information," European Journal of Operational Research, Elsevier, vol. 27(1), pages 117-128, October.
    6. Michael Q. Anderson, 1981. "Monotone optimal preventive maintenance policies for stochastically failing equipment," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 28(3), pages 347-358, September.
    7. William P. Pierskalla & John A. Voelker, 1976. "A survey of maintenance models: The control and surveillance of deteriorating systems," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 23(3), pages 353-388, September.
    8. Gary Gottlieb, 1982. "Optimal Replacement for Shock Models with General Failure Rate," Operations Research, INFORMS, vol. 30(1), pages 82-92, February.
    9. Peter Kolesar, 1966. "Minimum Cost Replacement Under Markovian Deterioration," Management Science, INFORMS, vol. 12(9), pages 694-706, May.
    10. Kut C. So, 1992. "Optimality of control limit policies in replacement models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(5), pages 685-697, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alaa H. Elwany & Nagi Z. Gebraeel & Lisa M. Maillart, 2011. "Structured Replacement Policies for Components with Complex Degradation Processes and Dedicated Sensors," Operations Research, INFORMS, vol. 59(3), pages 684-695, June.
    2. Reza Ahmadi, 2014. "Optimal maintenance scheduling for a complex manufacturing system subject to deterioration," Annals of Operations Research, Springer, vol. 217(1), pages 1-29, June.
    3. Ramin Moghaddass & Şeyda Ertekin, 2018. "Joint optimization of ordering and maintenance with condition monitoring data," Annals of Operations Research, Springer, vol. 263(1), pages 271-310, April.
    4. Srivastav, Himanshu & Lundteigen, Mary Ann & Barros, Anne, 2021. "Introduction of degradation modeling in qualification of the novel subsea technology," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ciriaco Valdez‐Flores & Richard M. Feldman, 1989. "A survey of preventive maintenance models for stochastically deteriorating single‐unit systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(4), pages 419-446, August.
    2. Kut C. So, 1992. "Optimality of control limit policies in replacement models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(5), pages 685-697, August.
    3. David T. Abdul‐Malak & Jeffrey P. Kharoufeh & Lisa M. Maillart, 2019. "Maintaining systems with heterogeneous spare parts," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(6), pages 485-501, September.
    4. Hsieh, Chung-Chi & Chiu, Kuo-Chang, 2002. "Optimal maintenance policy in a multistate deteriorating standby system," European Journal of Operational Research, Elsevier, vol. 141(3), pages 689-698, September.
    5. Lisa M. Maillart & Xiang Fang, 2006. "Optimal maintenance policies for serial, multi‐machine systems with non‐instantaneous repairs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(8), pages 804-813, December.
    6. Scott G. Frickenstein & Lyn R. Whitaker, 2003. "Age replacement policies in two time scales," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(6), pages 592-613, September.
    7. Alireza Sabouri & Woonghee Tim Huh & Steven M. Shechter, 2017. "Screening Strategies for Patients on the Kidney Transplant Waiting List," Operations Research, INFORMS, vol. 65(5), pages 1131-1146, October.
    8. Yeek-Hyun Kim & Lyn Thomas, 2013. "Training and repair policies for stand-by systems," Annals of Operations Research, Springer, vol. 208(1), pages 469-487, September.
    9. Retsef Levi & Thomas Magnanti & Yaron Shaposhnik, 2019. "Scheduling with Testing," Management Science, INFORMS, vol. 65(2), pages 776-793, February.
    10. Steven M. Shechter & Matthew D. Bailey & Andrew J. Schaefer, 2008. "Replacing nonidentical vital components to extend system life," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(7), pages 700-703, October.
    11. Park, Chong Hyun & Lim, Heejong, 2021. "A parametric approach to integer linear fractional programming: Newton’s and Hybrid-Newton methods for an optimal road maintenance problem," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1030-1039.
    12. Wenqi Hu & Carri W. Chan & José R. Zubizarreta & Gabriel J. Escobar, 2018. "An Examination of Early Transfers to the ICU Based on a Physiologic Risk Score," Manufacturing & Service Operations Management, INFORMS, vol. 20(3), pages 531-549, July.
    13. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    14. Wallace J. Hopp & Sung‐Chi Wu, 1988. "Multiaction maintenance under markovian deterioration and incomplete state information," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(5), pages 447-462, October.
    15. Dmitry BANNIKOV & Nina SIRINA & Alexander SMOLYANINOV, 2018. "Model Of The Maintenance And Repair System In Service Maintenance Management," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 13(3), pages 5-14, September.
    16. Yue Hu & Carri W. Chan & Jing Dong, 2022. "Optimal Scheduling of Proactive Service with Customer Deterioration and Improvement," Management Science, INFORMS, vol. 68(4), pages 2533-2578, April.
    17. Wang, Wei & Wu, Zhiying & Xiong, Junlin & Xu, Yaofeng, 2018. "Redundancy optimization of cold-standby systems under periodic inspection and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 394-402.
    18. Ahmadi, Reza & Fouladirad, Mitra, 2017. "Maintenance planning for a deteriorating production process," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 108-118.
    19. Çekyay, Bora & Özekici, Süleyman, 2012. "Optimal maintenance of systems with Markovian mission and deterioration," European Journal of Operational Research, Elsevier, vol. 219(1), pages 123-133.
    20. Kai He & Lisa M. Maillart & Oleg A. Prokopyev, 2019. "Optimal sequencing of heterogeneous, non-instantaneous interventions," Annals of Operations Research, Springer, vol. 276(1), pages 109-135, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:41:y:1994:i:3:p:303-315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.