Multi-chronological hierarchical clustering to solve capacity expansion problems with renewable sources
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.120491
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Pei-Hao & Pye, Steve & Keppo, Ilkka, 2020. "Using clustering algorithms to characterise uncertain long-term decarbonisation pathways," Applied Energy, Elsevier, vol. 268(C).
- Nahmmacher, Paul & Schmid, Eva & Hirth, Lion & Knopf, Brigitte, 2016. "Carpe diem: A novel approach to select representative days for long-term power system modeling," Energy, Elsevier, vol. 112(C), pages 430-442.
- Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
- Miloš Kopa & Vittorio Moriggia & Sebastiano Vitali, 2018. "Individual optimal pension allocation under stochastic dominance constraints," Annals of Operations Research, Springer, vol. 260(1), pages 255-291, January.
- Tso, William W. & Demirhan, C. Doga & Heuberger, Clara F. & Powell, Joseph B. & Pistikopoulos, Efstratios N., 2020. "A hierarchical clustering decomposition algorithm for optimizing renewable power systems with storage," Applied Energy, Elsevier, vol. 270(C).
- Karasu, Seçkin & Altan, Aytaç & Bekiros, Stelios & Ahmad, Wasim, 2020. "A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series," Energy, Elsevier, vol. 212(C).
- Frew, Bethany A. & Jacobson, Mark Z., 2016. "Temporal and spatial tradeoffs in power system modeling with assumptions about storage: An application of the POWER model," Energy, Elsevier, vol. 117(P1), pages 198-213.
- Merrick, James H., 2016. "On representation of temporal variability in electricity capacity planning models," Energy Economics, Elsevier, vol. 59(C), pages 261-274.
- Chicco, Gianfranco, 2012. "Overview and performance assessment of the clustering methods for electrical load pattern grouping," Energy, Elsevier, vol. 42(1), pages 68-80.
- Gong, Bing & Zheng, Xiaochen & Guo, Qing & Ordieres-Meré, Joaquín, 2019. "Discovering the patterns of energy consumption, GDP, and CO2 emissions in China using the cluster method," Energy, Elsevier, vol. 166(C), pages 1149-1167.
- Zatti, Matteo & Gabba, Marco & Freschini, Marco & Rossi, Michele & Gambarotta, Agostino & Morini, Mirko & Martelli, Emanuele, 2019. "k-MILP: A novel clustering approach to select typical and extreme days for multi-energy systems design optimization," Energy, Elsevier, vol. 181(C), pages 1051-1063.
- Domínguez, R. & Carrión, M. & Oggioni, G., 2020. "Planning and operating a renewable-dominated European power system under uncertainty," Applied Energy, Elsevier, vol. 258(C).
- Scott, Ian J. & Carvalho, Pedro M.S. & Botterud, Audun & Silva, Carlos A., 2019. "Clustering representative days for power systems generation expansion planning: Capturing the effects of variable renewables and energy storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Baringo, L. & Conejo, A.J., 2013. "Correlated wind-power production and electric load scenarios for investment decisions," Applied Energy, Elsevier, vol. 101(C), pages 475-482.
- Moriggia, Vittorio & Kopa, Miloš & Vitali, Sebastiano, 2019. "Pension fund management with hedging derivatives, stochastic dominance and nodal contamination," Omega, Elsevier, vol. 87(C), pages 127-141.
- Marquant, Julien F. & Bollinger, L. Andrew & Evins, Ralph & Carmeliet, Jan, 2018. "A new combined clustering method to Analyse the potential of district heating networks at large-scale," Energy, Elsevier, vol. 156(C), pages 73-83.
- Michal Kaut, 2014. "A copula-based heuristic for scenario generation," Computational Management Science, Springer, vol. 11(4), pages 503-516, October.
- Teichgraeber, Holger & Brandt, Adam R., 2019. "Clustering methods to find representative periods for the optimization of energy systems: An initial framework and comparison," Applied Energy, Elsevier, vol. 239(C), pages 1283-1293.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Elisabetta Allevi & Maria Elena Giuli & Ruth Domínguez & Giorgia Oggioni, 2023. "Evaluating the role of waste-to-energy and cogeneration units in district heatings and electricity markets," Computational Management Science, Springer, vol. 20(1), pages 1-49, December.
- Teichgraeber, Holger & Brandt, Adam R., 2022. "Time-series aggregation for the optimization of energy systems: Goals, challenges, approaches, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- García-Cerezo, Álvaro & Baringo, Luis & García-Bertrand, Raquel, 2023. "Expansion planning of the transmission network with high penetration of renewable generation: A multi-year two-stage adaptive robust optimization approach," Applied Energy, Elsevier, vol. 349(C).
- Huang, Nantian & Zhao, Xuanyuan & Guo, Yu & Cai, Guowei & Wang, Rijun, 2023. "Distribution network expansion planning considering a distributed hydrogen-thermal storage system based on photovoltaic development of the Whole County of China," Energy, Elsevier, vol. 278(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Teichgraeber, Holger & Brandt, Adam R., 2022. "Time-series aggregation for the optimization of energy systems: Goals, challenges, approaches, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- Hoffmann, Maximilian & Kotzur, Leander & Stolten, Detlef, 2022. "The Pareto-optimal temporal aggregation of energy system models," Applied Energy, Elsevier, vol. 315(C).
- Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
- Hoffmann, Maximilian & Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron & Kotzur, Leander & Stolten, Detlef, 2021. "Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models," Applied Energy, Elsevier, vol. 304(C).
- Helistö, Niina & Kiviluoma, Juha & Reittu, Hannu, 2020. "Selection of representative slices for generation expansion planning using regular decomposition," Energy, Elsevier, vol. 211(C).
- Kittel, Martin & Hobbie, Hannes & Dierstein, Constantin, 2022. "Temporal aggregation of time series to identify typical hourly electricity system states: A systematic assessment of relevant cluster algorithms," Energy, Elsevier, vol. 247(C).
- Merrick, James H. & Bistline, John E.T. & Blanford, Geoffrey J., 2024.
"On representation of energy storage in electricity planning models,"
Energy Economics, Elsevier, vol. 136(C).
- James H. Merrick & John E. T. Bistline & Geoffrey J. Blanford, 2021. "On representation of energy storage in electricity planning models," Papers 2105.03707, arXiv.org, revised May 2021.
- Domínguez, Ruth & Vitali, Sebastiano & Carrión, Miguel & Moriggia, Vittorio, 2021. "Analysing decarbonizing strategies in the European power system applying stochastic dominance constraints," Energy Economics, Elsevier, vol. 101(C).
- Gonzato, Sebastian & Bruninx, Kenneth & Delarue, Erik, 2021. "Long term storage in generation expansion planning models with a reduced temporal scope," Applied Energy, Elsevier, vol. 298(C).
- Zhang, Chao & Lasaulce, Samson & Hennebel, Martin & Saludjian, Lucas & Panciatici, Patrick & Poor, H. Vincent, 2021. "Decision-making oriented clustering: Application to pricing and power consumption scheduling," Applied Energy, Elsevier, vol. 297(C).
- Buchholz, Stefanie & Gamst, Mette & Pisinger, David, 2020. "Sensitivity analysis of time aggregation techniques applied to capacity expansion energy system models," Applied Energy, Elsevier, vol. 269(C).
- Kittel, Martin & Hobbie, Hannes & Dierstein, Constantin, 2022. "Temporal aggregation of time series to identify typical hourly electricity system states: A systematic assessment of relevant cluster algorithms," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 247, pages 1-15.
- Göke, Leonard & Kendziorski, Mario, 2022. "Adequacy of time-series reduction for renewable energy systems," Energy, Elsevier, vol. 238(PA).
- Yeganefar, Ali & Amin-Naseri, Mohammad Reza & Sheikh-El-Eslami, Mohammad Kazem, 2020. "Improvement of representative days selection in power system planning by incorporating the extreme days of the net load to take account of the variability and intermittency of renewable resources," Applied Energy, Elsevier, vol. 272(C).
- Kenjiro Yagi & Ramteen Sioshansi, 2023. "Simplifying capacity planning for electricity systems with hydroelectric and renewable generation," Computational Management Science, Springer, vol. 20(1), pages 1-28, December.
- Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
- Reichenberg, Lina & Hedenus, Fredrik & Odenberger, Mikael & Johnsson, Filip, 2018. "The marginal system LCOE of variable renewables – Evaluating high penetration levels of wind and solar in Europe," Energy, Elsevier, vol. 152(C), pages 914-924.
- Prina, Matteo Giacomo & Nastasi, Benedetto & Groppi, Daniele & Misconel, Steffi & Garcia, Davide Astiaso & Sparber, Wolfram, 2022. "Comparison methods of energy system frameworks, models and scenario results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Hilbers, Adriaan P. & Brayshaw, David J. & Gandy, Axel, 2023. "Reducing climate risk in energy system planning: A posteriori time series aggregation for models with storage," Applied Energy, Elsevier, vol. 334(C).
- Scott, Ian J. & Carvalho, Pedro M.S. & Botterud, Audun & Silva, Carlos A., 2019. "Clustering representative days for power systems generation expansion planning: Capturing the effects of variable renewables and energy storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
More about this item
Keywords
Capacity expansion; Clustering; Renewable sources; Stochastic optimization; Storage units;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:227:y:2021:i:c:s0360544221007404. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.