IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v236y2016i2p341-35810.1007-s10479-014-1605-7.html
   My bibliography  Save this article

Dynamic programming based metaheuristics for the dial-a-ride problem

Author

Listed:
  • Ulrike Ritzinger
  • Jakob Puchinger
  • Richard Hartl

Abstract

The organization of a specialized transportation system to perform transports for elderly and handicapped people is usually modeled as dial-a-ride problem. Users place transportation requests with specified pickup and delivery locations and times. The requests have to be completed under user inconvenience considerations by a specified fleet of vehicles. In the dial-a-ride problem, the aim is to minimize the total travel times respecting the given time windows, the maximum user ride times, and the vehicle restrictions. This paper introduces a dynamic programming algorithm for the dial-a-ride problem and demonstrates its effective application in (hybrid) metaheuristic approaches. Compared to most of the works presented in literature, this approach does not make use of any (commercial) solver. We present an exact dynamic programming algorithm and a dynamic programming based metaheuristic, which restricts the considered solution space. Then, we propose a hybrid metaheuristic algorithm which integrates the dynamic programming based algorithms into a large neighborhood framework. The algorithms are tested on a given set of benchmark instances from the literature and compared to a state-of-the-art hybrid large neighborhood search approach. Copyright Springer Science+Business Media New York 2016

Suggested Citation

  • Ulrike Ritzinger & Jakob Puchinger & Richard Hartl, 2016. "Dynamic programming based metaheuristics for the dial-a-ride problem," Annals of Operations Research, Springer, vol. 236(2), pages 341-358, January.
  • Handle: RePEc:spr:annopr:v:236:y:2016:i:2:p:341-358:10.1007/s10479-014-1605-7
    DOI: 10.1007/s10479-014-1605-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-014-1605-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-014-1605-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Pisinger & Stefan Ropke, 2010. "Large Neighborhood Search," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 399-419, Springer.
    2. Harilaos N. Psaraftis, 1980. "A Dynamic Programming Solution to the Single Vehicle Many-to-Many Immediate Request Dial-a-Ride Problem," Transportation Science, INFORMS, vol. 14(2), pages 130-154, May.
    3. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    4. Cordeau, Jean-François & Laporte, Gilbert, 2003. "A tabu search heuristic for the static multi-vehicle dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 579-594, July.
    5. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms," Transportation Science, INFORMS, vol. 39(1), pages 104-118, February.
    6. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    7. Jean-François Cordeau & Gilbert Laporte, 2007. "The dial-a-ride problem: models and algorithms," Annals of Operations Research, Springer, vol. 153(1), pages 29-46, September.
    8. Malandraki, Chryssi & Dial, Robert B., 1996. "A restricted dynamic programming heuristic algorithm for the time dependent traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 90(1), pages 45-55, April.
    9. Yvan Dumas & Jacques Desrosiers & Eric Gelinas & Marius M. Solomon, 1995. "An Optimal Algorithm for the Traveling Salesman Problem with Time Windows," Operations Research, INFORMS, vol. 43(2), pages 367-371, April.
    10. Timo Gschwind & Stefan Irnich, 2012. "Effective Handling of Dynamic Time Windows and Synchronization with Precedences for Exact Vehicle Routing," Working Papers 1211, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Pfeiffer & Arne Schulz, 2022. "An ALNS algorithm for the static dial-a-ride problem with ride and waiting time minimization," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 87-119, March.
    2. Han Zheng & Junhua Chen & Zhaocha Huang & Jianhao Zhu, 2022. "Joint Optimization of Multi-Cycle Timetable Considering Supply-to-Demand Relationship and Energy Consumption for Rail Express," Mathematics, MDPI, vol. 10(21), pages 1-29, November.
    3. Ritzinger, Ulrike & Puchinger, Jakob & Rudloff, Christian & Hartl, Richard F., 2022. "Comparison of anticipatory algorithms for a dial-a-ride problem," European Journal of Operational Research, Elsevier, vol. 301(2), pages 591-608.
    4. P. L. van den Berg & J. T. van Essen, 2019. "Scheduling Non-Urgent Patient Transportation While Maximizing Emergency Coverage," Transportation Science, INFORMS, vol. 53(2), pages 492-509, March.
    5. Han Zheng & Junhua Chen & Xingchen Zhang & Zixian Yang, 2019. "Designing a New Shuttle Service to Meet Large-Scale Instantaneous Peak Demands for Passenger Transportation in a Metropolitan Context: A Green, Low-Cost Mass Transport Option," Sustainability, MDPI, vol. 11(18), pages 1-28, September.
    6. Jianjun Fu & Junhua Chen, 2021. "A Green Transportation Planning Approach for Coal Heavy-Haul Railway System by Simultaneously Optimizing Energy Consumption and Capacity Utilization," Sustainability, MDPI, vol. 13(8), pages 1-25, April.
    7. Timo Gschwind & Michael Drexl, 2019. "Adaptive Large Neighborhood Search with a Constant-Time Feasibility Test for the Dial-a-Ride Problem," Transportation Science, INFORMS, vol. 53(2), pages 480-491, March.
    8. Tian, Xiaoyu & Zhang, Zhi-Hai, 2019. "Capacitated disassembly scheduling and pricing of returned products with price-dependent yield," Omega, Elsevier, vol. 84(C), pages 160-174.
    9. Dawei Chen & Fangxu Mo & Ye Chen & Jun Zhang & Xinyu You, 2022. "Optimization of Ramp Locations along Freeways: A Dynamic Programming Approach," Sustainability, MDPI, vol. 14(15), pages 1-13, August.
    10. Tafreshian, Amirmahdi & Abdolmaleki, Mojtaba & Masoud, Neda & Wang, Huizhu, 2021. "Proactive shuttle dispatching in large-scale dynamic dial-a-ride systems," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 227-259.
    11. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.
    12. Zhijie Liu & Jianyu Jiang & Zhiqiang Gan & Chengxin Lin, 2022. "Ballast water dynamic allocation optimization model and analysis for safe and reliable operation of floating cranes," Annals of Operations Research, Springer, vol. 311(1), pages 279-294, April.
    13. Ertan Yakıcı & Robert F. Dell & Travis Hartman & Connor McLemore, 2018. "Daily aircraft routing for amphibious ready groups," Annals of Operations Research, Springer, vol. 264(1), pages 477-498, May.
    14. Jagtenberg, C.J. & van den Berg, P.L. & van der Mei, R.D., 2017. "Benchmarking online dispatch algorithms for Emergency Medical Services," European Journal of Operational Research, Elsevier, vol. 258(2), pages 715-725.
    15. Fuying Liu & Chen Liu & Qi Zhao & Chenhao He, 2021. "A Hybrid Teaching-Learning-Based Optimization Algorithm for the Travel Route Optimization Problem alongside the Urban Railway Line," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    16. Salii, Yaroslav, 2019. "Revisiting dynamic programming for precedence-constrained traveling salesman problem and its time-dependent generalization," European Journal of Operational Research, Elsevier, vol. 272(1), pages 32-42.
    17. Yves Molenbruch & Kris Braekers & An Caris, 2017. "Typology and literature review for dial-a-ride problems," Annals of Operations Research, Springer, vol. 259(1), pages 295-325, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ulrike Ritzinger & Jakob Puchinger & Richard F. Hartl, 2016. "Dynamic programming based metaheuristics for the dial-a-ride problem," Annals of Operations Research, Springer, vol. 236(2), pages 341-358, January.
    2. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    3. Timo Gschwind & Michael Drexl, 2016. "Adaptive Large Neighborhood Search with a Constant-Time Feasibility Test for the Dial-a-Ride Problem," Working Papers 1624, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    4. Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2020. "Integrating first-mile pickup and last-mile delivery on shared vehicle routes for efficient urban e-commerce distribution," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 26-62.
    5. Liu, Mengyang & Luo, Zhixing & Lim, Andrew, 2015. "A branch-and-cut algorithm for a realistic dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 267-288.
    6. Liu, Yiming & Roberto, Baldacci & Zhou, Jianwen & Yu, Yang & Zhang, Yu & Sun, Wei, 2023. "Efficient feasibility checks and an adaptive large neighborhood search algorithm for the time-dependent green vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 310(1), pages 133-155.
    7. Hiermann, Gerhard & Puchinger, Jakob & Ropke, Stefan & Hartl, Richard F., 2016. "The Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations," European Journal of Operational Research, Elsevier, vol. 252(3), pages 995-1018.
    8. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.
    9. Häme, Lauri, 2011. "An adaptive insertion algorithm for the single-vehicle dial-a-ride problem with narrow time windows," European Journal of Operational Research, Elsevier, vol. 209(1), pages 11-22, February.
    10. Masmoudi, Mohamed Amine & Hosny, Manar & Braekers, Kris & Dammak, Abdelaziz, 2016. "Three effective metaheuristics to solve the multi-depot multi-trip heterogeneous dial-a-ride problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 60-80.
    11. Yves Molenbruch & Kris Braekers & An Caris, 2017. "Typology and literature review for dial-a-ride problems," Annals of Operations Research, Springer, vol. 259(1), pages 295-325, December.
    12. Christian Pfeiffer & Arne Schulz, 2022. "An ALNS algorithm for the static dial-a-ride problem with ride and waiting time minimization," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 87-119, March.
    13. Timo Gschwind & Michael Drexl, 2019. "Adaptive Large Neighborhood Search with a Constant-Time Feasibility Test for the Dial-a-Ride Problem," Transportation Science, INFORMS, vol. 53(2), pages 480-491, March.
    14. Lai, David S.W. & Caliskan Demirag, Ozgun & Leung, Janny M.Y., 2016. "A tabu search heuristic for the heterogeneous vehicle routing problem on a multigraph," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 32-52.
    15. Bongiovanni, Claudia & Kaspi, Mor & Cordeau, Jean-François & Geroliminis, Nikolas, 2022. "A machine learning-driven two-phase metaheuristic for autonomous ridesharing operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    16. Braekers, Kris & Caris, An & Janssens, Gerrit K., 2014. "Exact and meta-heuristic approach for a general heterogeneous dial-a-ride problem with multiple depots," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 166-186.
    17. Michelle Dunbar & Simon Belieres & Nagesh Shukla & Mehrdad Amirghasemi & Pascal Perez & Nishikant Mishra, 2020. "A genetic column generation algorithm for sustainable spare part delivery: application to the Sydney DropPoint network," Annals of Operations Research, Springer, vol. 290(1), pages 923-941, July.
    18. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    19. Loske, Dominic & Klumpp, Matthias, 2021. "Human-AI collaboration in route planning: An empirical efficiency-based analysis in retail logistics," International Journal of Production Economics, Elsevier, vol. 241(C).
    20. Bhoopalam, Anirudh Kishore & Agatz, Niels & Zuidwijk, Rob, 2018. "Planning of truck platoons: A literature review and directions for future research," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 212-228.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:236:y:2016:i:2:p:341-358:10.1007/s10479-014-1605-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.