IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v209y2011i1p11-22.html
   My bibliography  Save this article

An adaptive insertion algorithm for the single-vehicle dial-a-ride problem with narrow time windows

Author

Listed:
  • Häme, Lauri

Abstract

The dial-a-ride problem (DARP) is a widely studied theoretical challenge related to dispatching vehicles in demand-responsive transport services, in which customers contact a vehicle operator requesting to be carried from specified origins to specified destinations. An important subproblem arising in dynamic dial-a-ride services can be identified as the single-vehicle DARP, in which the goal is to determine the optimal route for a single vehicle with respect to a generalized objective function. The main result of this work is an adaptive insertion algorithm capable of producing optimal solutions for a time constrained version of this problem, which was first studied by Psaraftis in the early 1980s. The complexity of the algorithm is analyzed and evaluated by means of computational experiments, implying that a significant advantage of the proposed method can be identified as the possibility of controlling computational work smoothly, making the algorithm applicable to any problem size.

Suggested Citation

  • Häme, Lauri, 2011. "An adaptive insertion algorithm for the single-vehicle dial-a-ride problem with narrow time windows," European Journal of Operational Research, Elsevier, vol. 209(1), pages 11-22, February.
  • Handle: RePEc:eee:ejores:v:209:y:2011:i:1:p:11-22
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00558-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harilaos N. Psaraftis, 1980. "A Dynamic Programming Solution to the Single Vehicle Many-to-Many Immediate Request Dial-a-Ride Problem," Transportation Science, INFORMS, vol. 14(2), pages 130-154, May.
    2. Dumas, Yvan & Desrosiers, Jacques & Soumis, Francois, 1991. "The pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 54(1), pages 7-22, September.
    3. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    4. Thomas R. Sexton & Lawrence D. Bodin, 1985. "Optimizing Single Vehicle Many-to-Many Operations with Desired Delivery Times: I. Scheduling," Transportation Science, INFORMS, vol. 19(4), pages 378-410, November.
    5. Cordeau, Jean-François & Laporte, Gilbert, 2003. "A tabu search heuristic for the static multi-vehicle dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 579-594, July.
    6. Xiang, Zhihai & Chu, Chengbin & Chen, Haoxun, 2006. "A fast heuristic for solving a large-scale static dial-a-ride problem under complex constraints," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1117-1139, October.
    7. Jaw, Jang-Jei & Odoni, Amedeo R. & Psaraftis, Harilaos N. & Wilson, Nigel H. M., 1986. "A heuristic algorithm for the multi-vehicle advance request dial-a-ride problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 20(3), pages 243-257, June.
    8. Xiang, Zhihai & Chu, Chengbin & Chen, Haoxun, 2008. "The study of a dynamic dial-a-ride problem under time-dependent and stochastic environments," European Journal of Operational Research, Elsevier, vol. 185(2), pages 534-551, March.
    9. Jean-François Cordeau, 2006. "A Branch-and-Cut Algorithm for the Dial-a-Ride Problem," Operations Research, INFORMS, vol. 54(3), pages 573-586, June.
    10. Jean-François Cordeau & Gilbert Laporte, 2007. "The dial-a-ride problem: models and algorithms," Annals of Operations Research, Springer, vol. 153(1), pages 29-46, September.
    11. Garaix, Thierry & Artigues, Christian & Feillet, Dominique & Josselin, Didier, 2010. "Vehicle routing problems with alternative paths: An application to on-demand transportation," European Journal of Operational Research, Elsevier, vol. 204(1), pages 62-75, July.
    12. Berbeglia, Gerardo & Cordeau, Jean-François & Laporte, Gilbert, 2010. "Dynamic pickup and delivery problems," European Journal of Operational Research, Elsevier, vol. 202(1), pages 8-15, April.
    13. Diana, Marco & Dessouky, Maged M., 2004. "A new regret insertion heuristic for solving large-scale dial-a-ride problems with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 539-557, July.
    14. Harilaos N. Psaraftis, 1983. "An Exact Algorithm for the Single Vehicle Many-to-Many Dial-A-Ride Problem with Time Windows," Transportation Science, INFORMS, vol. 17(3), pages 351-357, August.
    15. Thomas R. Sexton & Lawrence D. Bodin, 1985. "Optimizing Single Vehicle Many-to-Many Operations with Desired Delivery Times: II. Routing," Transportation Science, INFORMS, vol. 19(4), pages 411-435, November.
    16. Coslovich, Luca & Pesenti, Raffaele & Ukovich, Walter, 2006. "A two-phase insertion technique of unexpected customers for a dynamic dial-a-ride problem," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1605-1615, December.
    17. Paolo Toth & Daniele Vigo, 1997. "Heuristic Algorithms for the Handicapped Persons Transportation Problem," Transportation Science, INFORMS, vol. 31(1), pages 60-71, February.
    18. Martin W. P. Savelsbergh, 1992. "The Vehicle Routing Problem with Time Windows: Minimizing Route Duration," INFORMS Journal on Computing, INFORMS, vol. 4(2), pages 146-154, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van Engelen, Matti & Cats, Oded & Post, Henk & Aardal, Karen, 2018. "Enhancing flexible transport services with demand-anticipatory insertion heuristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 110-121.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yves Molenbruch & Kris Braekers & An Caris, 2017. "Typology and literature review for dial-a-ride problems," Annals of Operations Research, Springer, vol. 259(1), pages 295-325, December.
    2. Liu, Mengyang & Luo, Zhixing & Lim, Andrew, 2015. "A branch-and-cut algorithm for a realistic dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 267-288.
    3. Jean-François Cordeau & Gilbert Laporte, 2007. "The dial-a-ride problem: models and algorithms," Annals of Operations Research, Springer, vol. 153(1), pages 29-46, September.
    4. Hua, Shijia & Zeng, Wenjia & Liu, Xinglu & Qi, Mingyao, 2022. "Optimality-guaranteed algorithms on the dynamic shared-taxi problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    5. Paquette, Julie & Cordeau, Jean-François & Laporte, Gilbert & Pascoal, Marta M.B., 2013. "Combining multicriteria analysis and tabu search for dial-a-ride problems," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 1-16.
    6. Garaix, Thierry & Artigues, Christian & Feillet, Dominique & Josselin, Didier, 2010. "Vehicle routing problems with alternative paths: An application to on-demand transportation," European Journal of Operational Research, Elsevier, vol. 204(1), pages 62-75, July.
    7. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.
    8. Kirchler, Dominik & Wolfler Calvo, Roberto, 2013. "A Granular Tabu Search algorithm for the Dial-a-Ride Problem," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 120-135.
    9. Christian Pfeiffer & Arne Schulz, 2022. "An ALNS algorithm for the static dial-a-ride problem with ride and waiting time minimization," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 87-119, March.
    10. Mahmoudi, Monirehalsadat & Zhou, Xuesong, 2016. "Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: A dynamic programming approach based on state–space–time network representations," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 19-42.
    11. Hou, Liwen & Li, Dong & Zhang, Dali, 2018. "Ride-matching and routing optimisation: Models and a large neighbourhood search heuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 143-162.
    12. Hosni, Hadi & Naoum-Sawaya, Joe & Artail, Hassan, 2014. "The shared-taxi problem: Formulation and solution methods," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 303-318.
    13. Velaga, Nagendra R. & Beecroft, Mark & Nelson, John D. & Corsar, David & Edwards, Peter, 2012. "Transport poverty meets the digital divide: accessibility and connectivity in rural communities," Journal of Transport Geography, Elsevier, vol. 21(C), pages 102-112.
    14. Luo, Ying & Schonfeld, Paul, 2007. "A rejected-reinsertion heuristic for the static Dial-A-Ride Problem," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 736-755, August.
    15. Mahmoudi, Monirehalsadat & Chen, Junhua & Shi, Tie & Zhang, Yongxiang & Zhou, Xuesong, 2019. "A cumulative service state representation for the pickup and delivery problem with transfers," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 351-380.
    16. Cortés, Cristián E. & Matamala, Martín & Contardo, Claudio, 2010. "The pickup and delivery problem with transfers: Formulation and a branch-and-cut solution method," European Journal of Operational Research, Elsevier, vol. 200(3), pages 711-724, February.
    17. Mitrovic-Minic, Snezana & Laporte, Gilbert, 2004. "Waiting strategies for the dynamic pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 635-655, August.
    18. Cordeau, Jean-François & Laporte, Gilbert, 2003. "A tabu search heuristic for the static multi-vehicle dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 579-594, July.
    19. Kergosien, Y. & Lenté, Ch. & Piton, D. & Billaut, J.-C., 2011. "A tabu search heuristic for the dynamic transportation of patients between care units," European Journal of Operational Research, Elsevier, vol. 214(2), pages 442-452, October.
    20. Braekers, Kris & Caris, An & Janssens, Gerrit K., 2014. "Exact and meta-heuristic approach for a general heterogeneous dial-a-ride problem with multiple depots," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 166-186.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:209:y:2011:i:1:p:11-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.