IDEAS home Printed from https://ideas.repec.org/p/zbw/pp1859/14.html
   My bibliography  Save this paper

Quantifying Subjective Uncertainty in Survey Expectations

Author

Listed:
  • Krüger, Fabian
  • Pavlova, Lora

Abstract

Several recent surveys ask for a person's subjective probabilities that the inflation rate falls into various outcome ranges. We provide a new measure of the uncertainty implicit in such probabilities. The measure has several advantages over existing methods: It is robust, trivial to implement, requires no functional form assumptions, and is well-defined for all logically possible probabilities. These advantages are particularly relevant when analyzing large scale consumer surveys. We illustrate the new measure using data from the Survey of Consumer Expectations.

Suggested Citation

  • Krüger, Fabian & Pavlova, Lora, 2020. "Quantifying Subjective Uncertainty in Survey Expectations," Working Papers 14, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
  • Handle: RePEc:zbw:pp1859:14
    DOI: 10.18452/21401
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/223195/1/SPPWP-14.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.18452/21401?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Olivier Coibion & Yuriy Gorodnichenko & Saten Kumar, 2018. "How Do Firms Form Their Expectations? New Survey Evidence," American Economic Review, American Economic Association, vol. 108(9), pages 2671-2713, September.
    2. Engelberg, Joseph & Manski, Charles F. & Williams, Jared, 2009. "Comparing the Point Predictions and Subjective Probability Distributions of Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 30-41.
    3. James E. Matheson & Robert L. Winkler, 1976. "Scoring Rules for Continuous Probability Distributions," Management Science, INFORMS, vol. 22(10), pages 1087-1096, June.
    4. Werner Ehm & Tilmann Gneiting & Alexander Jordan & Fabian Krüger, 2016. "Of quantiles and expectiles: consistent scoring functions, Choquet representations and forecast rankings," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 505-562, June.
    5. Andrew Schotter & Isabel Trevino, 2014. "Belief Elicitation in the Laboratory," Annual Review of Economics, Annual Reviews, vol. 6(1), pages 103-128, August.
    6. Boero, Gianna & Smith, Jeremy & Wallis, Kenneth F., 2011. "Scoring rules and survey density forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 379-393.
    7. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    8. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
    9. Olivier Armantier & Giorgio Topa & Wilbert Van der Klaauw & Basit Zafar, 2017. "An overview of the Survey of Consumer Expectations," Economic Policy Review, Federal Reserve Bank of New York, issue 23-2, pages 51-72.
    10. Marc-André Gosselin & Mikael Khan, 2015. "A Survey of Consumer Expectations for Canada," Bank of Canada Review, Bank of Canada, vol. 2015(Autumn), pages 14-23.
    11. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    12. Michael P. Clements, 2014. "Forecast Uncertainty- Ex Ante and Ex Post : U.S. Inflation and Output Growth," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 206-216, April.
    13. Adeline Delavande, 2014. "Probabilistic Expectations in Developing Countries," Annual Review of Economics, Annual Reviews, vol. 6(1), pages 1-20, August.
    14. Robert Rich & Joseph Tracy, 2010. "The Relationships among Expected Inflation, Disagreement, and Uncertainty: Evidence from Matched Point and Density Forecasts," The Review of Economics and Statistics, MIT Press, vol. 92(1), pages 200-207, February.
    15. Andrew Caplin & Mark Dean & John Leahy, 2022. "Rationally Inattentive Behavior: Characterizing and Generalizing Shannon Entropy," Journal of Political Economy, University of Chicago Press, vol. 130(6), pages 1676-1715.
    16. Sims, Christopher A., 2003. "Implications of rational inattention," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 665-690, April.
    17. Reinhard Selten, 1998. "Axiomatic Characterization of the Quadratic Scoring Rule," Experimental Economics, Springer;Economic Science Association, vol. 1(1), pages 43-61, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Backé & Elisabeth Beckmann, 2020. "What drives people’s expectations of euro adoption? – Evidence from the OeNB Euro Survey on selected CESEE countries," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue Q4/20, pages 57-79.
    2. Conrad, Christian & Enders, Zeno & Glas, Alexander, 2022. "The role of information and experience for households’ inflation expectations," European Economic Review, Elsevier, vol. 143(C).
    3. Dovern, Jonas, 2024. "Eliciting expectation uncertainty from private households," International Journal of Forecasting, Elsevier, vol. 40(1), pages 113-123.
    4. Montserrat Guillen & Miguel Santolino & Xenxo Vidal-Llana, 2022. ""Inequality of subjective economic uncertainty and individual economic prospects in the pandemic period"," IREA Working Papers 202202, University of Barcelona, Research Institute of Applied Economics, revised Feb 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krüger, Fabian & Pavlova, Lora, 2024. "Quantifying subjective uncertainty in survey expectations," International Journal of Forecasting, Elsevier, vol. 40(2), pages 796-810.
    2. Eyting, Markus & Schmidt, Patrick, 2021. "Belief elicitation with multiple point predictions," European Economic Review, Elsevier, vol. 135(C).
    3. Clements, Michael P., 2018. "Are macroeconomic density forecasts informative?," International Journal of Forecasting, Elsevier, vol. 34(2), pages 181-198.
    4. Giulia Piccillo & Poramapa Poonpakdee, 2021. "Effects of Macro Uncertainty on Mean Expectation and Subjective Uncertainty: Evidence from Households and Professional Forecasters," CESifo Working Paper Series 9486, CESifo.
    5. Charles F. Manski, 2018. "Survey Measurement of Probabilistic Macroeconomic Expectations: Progress and Promise," NBER Macroeconomics Annual, University of Chicago Press, vol. 32(1), pages 411-471.
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. Markus Eyting & Patrick Schmidt, 2019. "Belief Elicitation with Multiple Point Predictions," Working Papers 1818, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 16 Nov 2020.
    8. Knüppel, Malte & Schultefrankenfeld, Guido, 2019. "Assessing the uncertainty in central banks’ inflation outlooks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1748-1769.
    9. Geoff Kenny & Thomas Kostka & Federico Masera, 2015. "Density characteristics and density forecast performance: a panel analysis," Empirical Economics, Springer, vol. 48(3), pages 1203-1231, May.
    10. Malte Knüppel & Fabian Krüger, 2022. "Forecast uncertainty, disagreement, and the linear pool," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 23-41, January.
    11. Christopher Roth & Johannes Wohlfart, 2020. "How Do Expectations about the Macroeconomy Affect Personal Expectations and Behavior?," The Review of Economics and Statistics, MIT Press, vol. 102(4), pages 731-748, October.
    12. Luisa Bisaglia & Matteo Grigoletto, 2021. "A new time-varying model for forecasting long-memory series," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 139-155, March.
    13. Fissler Tobias & Ziegel Johanna F., 2021. "On the elicitability of range value at risk," Statistics & Risk Modeling, De Gruyter, vol. 38(1-2), pages 25-46, January.
    14. Fabian Kruger & Hendrik Plett, 2022. "Prediction intervals for economic fixed-event forecasts," Papers 2210.13562, arXiv.org, revised Mar 2024.
    15. Clements, Michael P., 2021. "Do survey joiners and leavers differ from regular participants? The US SPF GDP growth and inflation forecasts," International Journal of Forecasting, Elsevier, vol. 37(2), pages 634-646.
    16. Krüger, Fabian & Nolte, Ingmar, 2016. "Disagreement versus uncertainty: Evidence from distribution forecasts," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 172-186.
    17. Glas, Alexander, 2020. "Five dimensions of the uncertainty–disagreement linkage," International Journal of Forecasting, Elsevier, vol. 36(2), pages 607-627.
    18. Tommaso Proietti & Martyna Marczak & Gianluigi Mazzi, 2017. "Euromind‐ D : A Density Estimate of Monthly Gross Domestic Product for the Euro Area," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 683-703, April.
    19. Alexander Henzi & Johanna F. Ziegel & Tilmann Gneiting, 2021. "Isotonic distributional regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 963-993, November.
    20. Werner Ehm & Tilmann Gneiting & Alexander Jordan & Fabian Krüger, 2016. "Of quantiles and expectiles: consistent scoring functions, Choquet representations and forecast rankings," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 505-562, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:pp1859:14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://www.experience-expectation.de/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.