IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v32y2003i3p445-455.html
   My bibliography  Save this article

The joint density function of three characteristics on jump-diffusion risk process

Author

Listed:
  • Zhang, Chunsheng
  • Wang, Guojing

Abstract

No abstract is available for this item.

Suggested Citation

  • Zhang, Chunsheng & Wang, Guojing, 2003. "The joint density function of three characteristics on jump-diffusion risk process," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 445-455, July.
  • Handle: RePEc:eee:insuma:v:32:y:2003:i:3:p:445-455
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(03)00133-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dickson, David C. M., 1992. "On the distribution of the surplus prior to ruin," Insurance: Mathematics and Economics, Elsevier, vol. 11(3), pages 191-207, October.
    2. Wang, Guojing, 2001. "A decomposition of the ruin probability for the risk process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 28(1), pages 49-59, February.
    3. Egidio dos Reis, Alfredo, 1993. "How long is the surplus below zero?," Insurance: Mathematics and Economics, Elsevier, vol. 12(1), pages 23-38, February.
    4. Dufresne, Francois & Gerber, Hans U., 1991. "Risk theory for the compound Poisson process that is perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 10(1), pages 51-59, March.
    5. Gerber, Hans U. & Goovaerts, Marc J. & Kaas, Rob, 1987. "On the Probability and Severity of Ruin," ASTIN Bulletin, Cambridge University Press, vol. 17(2), pages 151-163, November.
    6. Wu, Rong & Wang, Guojing & Wei, Li, 2003. "Joint distributions of some actuarial random vectors containing the time of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 147-161, August.
    7. Gerber, Hans U. & Landry, Bruno, 1998. "On the discounted penalty at ruin in a jump-diffusion and the perpetual put option," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 263-276, July.
    8. Gerber, Hans U. & Shiu, Elias S. W., 1997. "The joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 129-137, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christophette Blanchet-Scalliet & Diana Dorobantu & Didier Rullière, 2013. "The density of the ruin time for a renewal-reward process perturbed by a diffusion," Post-Print hal-00625099, HAL.
    2. Liu, Peng & Zhang, Chunsheng & Ji, Lanpeng, 2017. "A note on ruin problems in perturbed classical risk models," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 28-33.
    3. Lu, Zhaoyang & Xu, Wei & Zhang, Yan & Sun, Yingling, 2009. "On the ruin probability for the Cox correlated risk model perturbed by diffusion," Statistics & Probability Letters, Elsevier, vol. 79(3), pages 381-389, February.
    4. Hüsler, Jürg & Zhang, Yueming, 2008. "On first and last ruin times of Gaussian processes," Statistics & Probability Letters, Elsevier, vol. 78(10), pages 1230-1235, August.
    5. Zhou, Xiaowen, 2004. "When does surplus reach a certain level before ruin?," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 553-561, December.
    6. Kam C. Yuen & Yuhua Lu & Rong Wu, 2009. "The compound Poisson process perturbed by a diffusion with a threshold dividend strategy," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(1), pages 73-93, January.
    7. Hüsler, Jürg & Piterbarg, Vladimir, 2008. "A limit theorem for the time of ruin in a Gaussian ruin problem," Stochastic Processes and their Applications, Elsevier, vol. 118(11), pages 2014-2021, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerber, Hans U. & Landry, Bruno, 1998. "On the discounted penalty at ruin in a jump-diffusion and the perpetual put option," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 263-276, July.
    2. Tsai, Cary Chi-Liang, 2001. "On the discounted distribution functions of the surplus process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 28(3), pages 401-419, June.
    3. Diko, Peter & Usábel, Miguel, 2011. "A numerical method for the expected penalty-reward function in a Markov-modulated jump-diffusion process," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 126-131, July.
    4. Schmidli, Hanspeter, 2010. "On the Gerber-Shiu function and change of measure," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 3-11, February.
    5. Franck Adékambi & Essodina Takouda, 2020. "Gerber–Shiu Function in a Class of Delayed and Perturbed Risk Model with Dependence," Risks, MDPI, vol. 8(1), pages 1-25, March.
    6. Psarrakos, Georgios & Politis, Konstadinos, 2008. "Tail bounds for the joint distribution of the surplus prior to and at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 163-176, February.
    7. Wei, Li & Wu, Rong, 2002. "The joint distributions of several important actuarial diagnostics in the classical risk model," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 451-462, June.
    8. Lin, X. Sheldon & Willmot, Gordon E., 2000. "The moments of the time of ruin, the surplus before ruin, and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 19-44, August.
    9. Tsai, Cary Chi-Liang & Willmot, Gordon E., 2002. "A generalized defective renewal equation for the surplus process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 30(1), pages 51-66, February.
    10. Chiu, S. N. & Yin, C. C., 2003. "The time of ruin, the surplus prior to ruin and the deficit at ruin for the classical risk process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 59-66, August.
    11. Wang, Guojing & Wu, Rong, 2008. "The expected discounted penalty function for the perturbed compound Poisson risk process with constant interest," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 59-64, February.
    12. Yang, Hailiang, 2003. "Ruin theory in a financial corporation model with credit risk," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 135-145, August.
    13. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    14. Biffis, Enrico & Morales, Manuel, 2010. "On a generalization of the Gerber-Shiu function to path-dependent penalties," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 92-97, February.
    15. Woo, Jae-Kyung, 2011. "Refinements of two-sided bounds for renewal equations," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 189-196, March.
    16. Tsai, Cary Chi-Liang, 2003. "On the expectations of the present values of the time of ruin perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 413-429, July.
    17. Morales, Manuel, 2007. "On the expected discounted penalty function for a perturbed risk process driven by a subordinator," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 293-301, March.
    18. Liu, Guoxin & Zhao, Jinyan, 2007. "Joint distributions of some actuarial random vectors in the compound binomial model," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 95-103, January.
    19. Franck Adékambi & Essodina Takouda, 2022. "On the Discounted Penalty Function in a Perturbed Erlang Renewal Risk Model With Dependence," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 481-513, June.
    20. Tsai, Cary Chi-Liang & Sun, Li-juan, 2004. "On the discounted distribution functions for the Erlang(2) risk process," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 5-19, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:32:y:2003:i:3:p:445-455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.