IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v202y2010i1p73-81.html
   My bibliography  Save this article

Heuristics and exact methods for number partitioning

Author

Listed:
  • Pedroso, João Pedro
  • Kubo, Mikio

Abstract

Number partitioning is a classical NP-hard combinatorial optimization problem, whose solution is challenging for both exact and approximative methods. This work presents a new algorithm for number partitioning, based on ideas drawn from tree search, breadth first search, and beam search. A new set of benchmark instances for this problem is also proposed. The behavior of the new method on this and other testbeds is analyzed and compared to other well known heuristics and exact algorithms.

Suggested Citation

  • Pedroso, João Pedro & Kubo, Mikio, 2010. "Heuristics and exact methods for number partitioning," European Journal of Operational Research, Elsevier, vol. 202(1), pages 73-81, April.
  • Handle: RePEc:eee:ejores:v:202:y:2010:i:1:p:73-81
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00300-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David S. Johnson & Cecilia R. Aragon & Lyle A. McGeoch & Catherine Schevon, 1991. "Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning," Operations Research, INFORMS, vol. 39(3), pages 378-406, June.
    2. Benjamin Yakir, 1996. "The Differencing Algorithm LDM for Partitioning: A Proof of a Conjecture of Karmarkar and Karp," Mathematics of Operations Research, INFORMS, vol. 21(1), pages 85-99, February.
    3. S. Boettcher & S. Mertens, 2008. "Analysis of the Karmarkar-Karp differencing algorithm," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 65(1), pages 131-140, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Rei & João Pedroso, 2013. "Tree search for the stacking problem," Annals of Operations Research, Springer, vol. 203(1), pages 371-388, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goodson, Justin C. & Ohlmann, Jeffrey W. & Thomas, Barrett W., 2012. "Cyclic-order neighborhoods with application to the vehicle routing problem with stochastic demand," European Journal of Operational Research, Elsevier, vol. 217(2), pages 312-323.
    2. Jagota, Arun, 1996. "An adaptive, multiple restarts neural network algorithm for graph coloring," European Journal of Operational Research, Elsevier, vol. 93(2), pages 257-270, September.
    3. Nicolas Zufferey & Olivier Labarthe & David Schindl, 2012. "Heuristics for a project management problem with incompatibility and assignment costs," Computational Optimization and Applications, Springer, vol. 51(3), pages 1231-1252, April.
    4. Schlereth, Christian & Stepanchuk, Tanja & Skiera, Bernd, 2010. "Optimization and analysis of the profitability of tariff structures with two-part tariffs," European Journal of Operational Research, Elsevier, vol. 206(3), pages 691-701, November.
    5. Xiao-Feng Xie & Jiming Liu, 2009. "Graph coloring by multiagent fusion search," Journal of Combinatorial Optimization, Springer, vol. 18(2), pages 99-123, August.
    6. Pirlot, Marc, 1996. "General local search methods," European Journal of Operational Research, Elsevier, vol. 92(3), pages 493-511, August.
    7. Chang-Yong Lee & Dongju Lee, 2014. "Determination of initial temperature in fast simulated annealing," Computational Optimization and Applications, Springer, vol. 58(2), pages 503-522, June.
    8. Charon, Irene & Hudry, Olivier, 2001. "The noising methods: A generalization of some metaheuristics," European Journal of Operational Research, Elsevier, vol. 135(1), pages 86-101, November.
    9. M Plumettaz & D Schindl & N Zufferey, 2010. "Ant Local Search and its efficient adaptation to graph colouring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 819-826, May.
    10. Russell Bent & Pascal Van Hentenryck, 2004. "A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 38(4), pages 515-530, November.
    11. Doole, Graeme J., 2007. "A primer on implementing compressed simulated annealing for the optimisation of a constrained simulation model in Microsoft Excel," Working Papers 7420, University of Western Australia, School of Agricultural and Resource Economics.
    12. Massimiliano Caramia & Paolo Dell'Olmo, 2001. "Iterative coloring extension of a maximum clique," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(6), pages 518-550, September.
    13. Laurent Moalic & Alexandre Gondran, 2018. "Variations on memetic algorithms for graph coloring problems," Journal of Heuristics, Springer, vol. 24(1), pages 1-24, February.
    14. C A Glass & A Prügel-Bennett, 2005. "A polynomially searchable exponential neighbourhood for graph colouring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(3), pages 324-330, March.
    15. Valmir C. Barbosa & Carlos A.G. Assis & Josina O. Do Nascimento, 2004. "Two Novel Evolutionary Formulations of the Graph Coloring Problem," Journal of Combinatorial Optimization, Springer, vol. 8(1), pages 41-63, March.
    16. Enrico Malaguti & Michele Monaci & Paolo Toth, 2008. "A Metaheuristic Approach for the Vertex Coloring Problem," INFORMS Journal on Computing, INFORMS, vol. 20(2), pages 302-316, May.
    17. Brailsford, Sally C. & Potts, Chris N. & Smith, Barbara M., 1999. "Constraint satisfaction problems: Algorithms and applications," European Journal of Operational Research, Elsevier, vol. 119(3), pages 557-581, December.
    18. Goodson, Justin C., 2015. "A priori policy evaluation and cyclic-order-based simulated annealing for the multi-compartment vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 241(2), pages 361-369.
    19. Bradley Hardy & Rhyd Lewis & Jonathan Thompson, 2018. "Tackling the edge dynamic graph colouring problem with and without future adjacency information," Journal of Heuristics, Springer, vol. 24(3), pages 321-343, June.
    20. Çetin, Gürcan & Keçebaş, Ali, 2021. "Optimization of thermodynamic performance with simulated annealing algorithm: A geothermal power plant," Renewable Energy, Elsevier, vol. 172(C), pages 968-982.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:202:y:2010:i:1:p:73-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.