IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v35y2001i5p413-432.html
   My bibliography  Save this article

Optimization of multiple objective gate assignments

Author

Listed:
  • Yan, Shangyao
  • Huo, Cheun-Ming

Abstract

This paper proposes a multiple objective model to help airport authorities to efficiently and effectively solve gate assignment problems. The model is formulated as a multiple objective zero-one integer program. To efficiently solve large-scale problems in practice, we used the weighting method, the column generation approach, the simplex method and the branch-and-bound technique to develop a solution algorithm. To test how well the model may be applied in actual operations, a case study regarding the operation of Chiang Kai-Shek (CKS) Airport was performed. The results show that the model could be useful for actual operations.

Suggested Citation

  • Yan, Shangyao & Huo, Cheun-Ming, 2001. "Optimization of multiple objective gate assignments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(5), pages 413-432, June.
  • Handle: RePEc:eee:transa:v:35:y:2001:i:5:p:413-432
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(99)00065-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin Desrochers & François Soumis, 1989. "A Column Generation Approach to the Urban Transit Crew Scheduling Problem," Transportation Science, INFORMS, vol. 23(1), pages 1-13, February.
    2. Lavoie, Sylvie & Minoux, Michel & Odier, Edouard, 1988. "A new approach for crew pairing problems by column generation with an application to air transportation," European Journal of Operational Research, Elsevier, vol. 35(1), pages 45-58, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guépet, J. & Acuna-Agost, R. & Briant, O. & Gayon, J.P., 2015. "Exact and heuristic approaches to the airport stand allocation problem," European Journal of Operational Research, Elsevier, vol. 246(2), pages 597-608.
    2. Xu, Liang & Zhang, Chao & Xiao, Feng & Wang, Fan, 2017. "A robust approach to airport gate assignment with a solution-dependent uncertainty budget," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 458-478.
    3. Daş, Gülesin Sena & Gzara, Fatma & Stützle, Thomas, 2020. "A review on airport gate assignment problems: Single versus multi objective approaches," Omega, Elsevier, vol. 92(C).
    4. Bert Dijk & Bruno F. Santos & Joao P. Pita, 2019. "The recoverable robust stand allocation problem: a GRU airport case study," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 615-639, September.
    5. Li, Mingjie & Hao, Jin-Kao & Wu, Qinghua, 2022. "Learning-driven feasible and infeasible tabu search for airport gate assignment," European Journal of Operational Research, Elsevier, vol. 302(1), pages 172-186.
    6. Yan, Shangyao & Tang, Chin-Hui & Chen, Miawjane, 2004. "A model and a solution algorithm for airport common use check-in counter assignments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(2), pages 101-125, February.
    7. Drexl, Andreas & Nikulin, Yuri, 2005. "Multicriteria time window-constrained project scheduling with applications to airport gate assignment. Part I: Methodology," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 595, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    8. Amadeo Ascó, 2016. "An Analysis of Robustness Approaches for the Airport Baggage Sorting Station Assignment Problem," Journal of Optimization, Hindawi, vol. 2016, pages 1-19, September.
    9. Yan, Shangyao & Shieh, Chi-Yuan & Chen, Miawjane, 2002. "A simulation framework for evaluating airport gate assignments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(10), pages 885-898, December.
    10. Dorndorf, Ulrich & Drexl, Andreas & Nikulin, Yury & Pesch, Erwin, 2007. "Flight gate scheduling: State-of-the-art and recent developments," Omega, Elsevier, vol. 35(3), pages 326-334, June.
    11. Drexl, Andreas & Nikulin, Yury, 2005. "Multicriteria airport gate assignment and pareto simulated annealing," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 586, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    12. Dorndorf, Ulrich & Drexl, Andreas & Nikulin, Yury & Pesch, Erwin, 2005. "Flight gate scheduling: State-of-the-art and recent developments," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 584, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    13. Ya Xu & Qiushuang Chen & Xiongwen Quan, 2012. "Robust berth scheduling with uncertain vessel delay and handling time," Annals of Operations Research, Springer, vol. 192(1), pages 123-140, January.
    14. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2012. "Flight gate scheduling with respect to a reference schedule," Annals of Operations Research, Springer, vol. 194(1), pages 177-187, April.
    15. Xiao, Mei & Chien, Steven & Schonfeld, Paul & Hu, Dawei, 2020. "Optimizing flight equencing and gate assignment considering terminal configuration and walking time," Journal of Air Transport Management, Elsevier, vol. 86(C).
    16. Zhang, Dong & Klabjan, Diego, 2017. "Optimization for gate re-assignment," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 260-284.
    17. Karsu, Özlem & Azizoğlu, Meral & Alanlı, Kerem, 2021. "Exact and heuristic solution approaches for the airport gate assignment problem," Omega, Elsevier, vol. 103(C).
    18. Yan, Shangyao & Chang, Kai-Cheng & Tang, Chin-Hui, 2005. "Minimizing inconsistencies in airport common-use checking counter assignments with a variable number of counters," Journal of Air Transport Management, Elsevier, vol. 11(2), pages 107-116.
    19. Yan, Shangyao & Tang, Ching-Hui, 2007. "A heuristic approach for airport gate assignments for stochastic flight delays," European Journal of Operational Research, Elsevier, vol. 180(2), pages 547-567, July.
    20. Skorupski, Jacek & Żarów, Piotr, 2021. "Dynamic management of aircraft stand allocation," Journal of Air Transport Management, Elsevier, vol. 90(C).
    21. Bagamanova, Margarita & Mota, Miguel Mujica, 2020. "A multi-objective optimization with a delay-aware component for airport stand allocation," Journal of Air Transport Management, Elsevier, vol. 83(C).
    22. Shangyao Yan & Fei-Yen Hsiao & Yi-Chun Chen, 2015. "Inter-School Bus Scheduling Under Stochastic Travel Times," Networks and Spatial Economics, Springer, vol. 15(4), pages 1049-1074, December.
    23. Şeker, Merve & Noyan, Nilay, 2012. "Stochastic optimization models for the airport gate assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 438-459.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beasley, J. E. & Cao, B., 1996. "A tree search algorithm for the crew scheduling problem," European Journal of Operational Research, Elsevier, vol. 94(3), pages 517-526, November.
    2. Guo, Yufeng & Mellouli, Taieb & Suhl, Leena & Thiel, Markus P., 2006. "A partially integrated airline crew scheduling approach with time-dependent crew capacities and multiple home bases," European Journal of Operational Research, Elsevier, vol. 171(3), pages 1169-1181, June.
    3. Cynthia Barnhart & Amy Cohn, 2004. "Airline Schedule Planning: Accomplishments and Opportunities," Manufacturing & Service Operations Management, INFORMS, vol. 6(1), pages 3-22, November.
    4. A. Mingozzi & M. A. Boschetti & S. Ricciardelli & L. Bianco, 1999. "A Set Partitioning Approach to the Crew Scheduling Problem," Operations Research, INFORMS, vol. 47(6), pages 873-888, December.
    5. Breugem, T. & van Rossum, B.T.C. & Dollevoet, T. & Huisman, D., 2022. "A column generation approach for the integrated crew re-planning problem," Omega, Elsevier, vol. 107(C).
    6. Breugem, T. & Dollevoet, T.A.B. & Huisman, D., 2019. "A Column Generation Approach for the Integrated Crew Re-Planning Problem," Econometric Institute Research Papers EI2019-31, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Maenhout, Broos & Vanhoucke, Mario, 2010. "A hybrid scatter search heuristic for personalized crew rostering in the airline industry," European Journal of Operational Research, Elsevier, vol. 206(1), pages 155-167, October.
    8. Sankaran, Jayaram K., 1995. "Column generation applied to linear programs in course registration," European Journal of Operational Research, Elsevier, vol. 87(2), pages 328-342, December.
    9. Sriram, Chellappan & Haghani, Ali, 2003. "An optimization model for aircraft maintenance scheduling and re-assignment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(1), pages 29-48, January.
    10. Perumal, Shyam S.G. & Lusby, Richard M. & Larsen, Jesper, 2022. "Electric bus planning & scheduling: A review of related problems and methodologies," European Journal of Operational Research, Elsevier, vol. 301(2), pages 395-413.
    11. Hollis, B.L. & Forbes, M.A. & Douglas, B.E., 2006. "Vehicle routing and crew scheduling for metropolitan mail distribution at Australia Post," European Journal of Operational Research, Elsevier, vol. 173(1), pages 133-150, August.
    12. Mariusz Izdebski & Marianna Jacyna, 2021. "An Efficient Hybrid Algorithm for Energy Expenditure Estimation for Electric Vehicles in Urban Service Enterprises," Energies, MDPI, vol. 14(7), pages 1-23, April.
    13. Sarac, Abdulkadir & Batta, Rajan & Rump, Christopher M., 2006. "A branch-and-price approach for operational aircraft maintenance routing," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1850-1869, December.
    14. Ahmed M. Marzouk & Erick Moreno-Centeno & Halit Üster, 2016. "A Branch-and-Price Algorithm for Solving the Hamiltonian p -Median Problem," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 674-686, November.
    15. Zeren, Bahadır & Özcan, Ender & Deveci, Muhammet, 2024. "An adaptive greedy heuristic for large scale airline crew pairing problems," Journal of Air Transport Management, Elsevier, vol. 114(C).
    16. Shyam S. G. Perumal & Jesper Larsen & Richard M. Lusby & Morten Riis & Tue R. L. Christensen, 2022. "A column generation approach for the driver scheduling problem with staff cars," Public Transport, Springer, vol. 14(3), pages 705-738, October.
    17. Haase, Knut, 1997. "Modellgestützte Personaleinsatzplanung im Einzelhandel," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 458, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    18. Wedelin, Dag, 1995. "The design of a 0-1 integer optimizer and its application in the Carmen system," European Journal of Operational Research, Elsevier, vol. 87(3), pages 722-730, December.
    19. Yan, Shangyao & Chang, Jei-Chi, 2002. "Airline cockpit crew scheduling," European Journal of Operational Research, Elsevier, vol. 136(3), pages 501-511, February.
    20. Perumal, S.S.G. & Dollevoet, T.A.B. & Huisman, D. & Lusby, R.M. & Larsen, J. & Riis, M., 2020. "Solution Approaches for Vehicle and Crew Scheduling with Electric Buses," Econometric Institute Research Papers EI-2020-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:35:y:2001:i:5:p:413-432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.