IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v338y2024i2d10.1007_s10479-024-05947-0.html
   My bibliography  Save this article

Enhanced branch-and-bound algorithm for chance constrained programs with Gaussian mixture models

Author

Listed:
  • Jinxiang Wei

    (Tongji University)

  • Zhaolin Hu

    (Tongji University)

  • Jun Luo

    (Shanghai Jiao Tong University)

  • Shushang Zhu

    (Sun Yat-Sen University)

Abstract

We study a class of chance constrained programs (CCPs) where the underlying distribution is modeled by a Gaussian mixture model. As the original work, Hu et al. (IISE Trans 54(12):1117–1130, 2022. https://doi.org/10.1080/24725854.2021.2001608 ) developed a spatial branch-and-bound (B &B) algorithm to solve the problems. In this paper, we propose an enhanced procedure to speed up the computation of B &B algorithm. We design an enhanced pruning strategy that explores high-potential domains and an augmented branching strategy that prevents redundant computations. We integrate the new strategies into original framework to develop an enhanced B &B algorithm, and illustrate how the enhanced algorithm improves on the original approach. Furthermore, we extend the enhanced B &B framework to handle the CCPs with multiple chance constraints, which is not considered in the previous work. We evaluate the performance of our new algorithm through extensive numerical experiments and apply it to solve a real-world portfolio selection problem.

Suggested Citation

  • Jinxiang Wei & Zhaolin Hu & Jun Luo & Shushang Zhu, 2024. "Enhanced branch-and-bound algorithm for chance constrained programs with Gaussian mixture models," Annals of Operations Research, Springer, vol. 338(2), pages 1283-1315, July.
  • Handle: RePEc:spr:annopr:v:338:y:2024:i:2:d:10.1007_s10479-024-05947-0
    DOI: 10.1007/s10479-024-05947-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-024-05947-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-024-05947-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:338:y:2024:i:2:d:10.1007_s10479-024-05947-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.